Background: Early detection of the effects of smoking is of the utmost importance in the prevention of chronic obstructive pulmonary disease (COPD). The forced oscillation technique (FOT) is easy to perform since it requires only tidal breathing and offers a detailed approach to investigate the mechanical properties of the respiratory system. The FOT was recently suggested as an attractive alternative for diagnosing initial obstruction in COPD, which may be helpful in detecting COPD in its initial phases. Thus, the purpose of this study was twofold: (1) to evaluate the ability of FOT to detect early smoking-induced respiratory alterations; and (2) to compare the sensitivity of FOT with spirometry in a sample of low tobacco-dose subjects.
BackgroundThe Forced Oscillation Technique (FOT) has the potential to increase our knowledge about the biomechanical changes that occur in Cystic Fibrosis (CF). Thus, the aims of this study were to investigate changes in the resistive and reactive properties of the respiratory systems of adults with CF.MethodsThe study was conducted in a group of 27 adults with CF over 18 years old and a control group of 23 healthy individuals, both of which were assessed by the FOT, plethysmography and spirometry. An equivalent electrical circuit model was also used to quantify biomechanical changes and to gain physiological insight.Results and discussionThe CF adults presented an increased total respiratory resistance (p < 0.0001), increased resistance curve slope (p < 0.0006) and reduced dynamic compliance (p < 0.0001). In close agreement with the physiology of CF, the model analysis showed increased peripheral resistance (p < 0.0005) and reduced compliance (p < 0.0004) and inertance (p < 0.005). Significant reasonable to good correlations were observed between the resistive parameters and spirometric and plethysmographic indexes. Similar associations were observed for the reactive parameters. Peripheral resistance, obtained by the model analysis, presented reasonable (R = 0.35) to good (R = 0.64) relationships with plethysmographic parameters.ConclusionsThe FOT adequately assessed the biomechanical changes associated with CF. The model used provides sensitive indicators of lung function and has the capacity to differentiate between obstructed and non-obstructed airway conditions. The FOT shows great potential for the clinical assessment of respiratory mechanics in adults with CF.
INTRODUCTION:Detection of smoking effects is of utmost importance in the prevention of cigarette‐induced chronic airway obstruction. The forced oscillation technique offers a simple and detailed approach to investigate the mechanical properties of the respiratory system. However, there have been no data concerning the use of the forced oscillation technique to evaluate respiratory mechanics in groups with different degrees of tobacco consumption.OBJECTIVES:(1) to evaluate the ability of the forced oscillation technique to detect smoking‐induced respiratory alterations, with special emphasis on early alterations; and (2) to compare the diagnostic accuracy of the forced oscillation technique and spirometric parameters.METHODS:One hundred and seventy subjects were divided into five groups according to the number of pack–years smoked: four groups of smokers classified as <20, 20–39, 40–59, and >60 pack–years and a control group. The four groups of smokers were compared with the control group using receiver operating characteristic (ROC) curves.RESULTS:The early adverse effects of smoking in the group with <20 pack–years were adequately detected by forced oscillation technique parameters. In this group, the comparisons of the ROC curves showed significantly better diagnostic accuracy (p<0.01) for forced oscillation technique parameters. On the other hand, in groups of 20–39, 40–59, and >60 pack–years, the diagnostic performance of the forced oscillation technique was similar to that observed with spirometry.CONCLUSIONS:This study revealed that forced oscillation technique parameters were able to detect early smoking‐induced respiratory involvement when pathologic changes are still potentially reversible. These findings support the use of the forced oscillation technique as a versatile clinical diagnostic tool in helping with chronic obstructive lung disease prevention, diagnosis, and treatment.
BackgroundPulmonary complications are the most common cause of death and morbidity in systemic sclerosis (SSc). The forced oscillation technique (FOT) offers a simple and detailed approach to investigate the mechanical properties of the respiratory system. We hypothesized that SSc may introduce changes in the resistive and reactive properties of the respiratory system, and that FOT may help the diagnosis of these abnormalities.Methodology/Principal FindingsWe tested these hypotheses in controls (n = 30) and patients with abnormalities classified using spirometry (n = 52) and pulmonary volumes (n = 29). Resistive data were interpreted with the zero-intercept resistance (Ri) and the slope of the resistance (S) as a function of frequency. Reactance changes were evaluated by the mean reactance between 4 and 32 Hz (Xm) and the dynamic compliance (Crs,dyn). The mechanical load was evaluated using the absolute value of the impedance in 4 Hz (Z4Hz). A compartmental model was used to obtain central (R) and peripheral (Rp) resistances, and alveolar compliance (C). The clinical usefulness was evaluated by investigating the area under the receiver operating characteristic curve (AUC). The presence of expiratory flow limitation (EFL) was also evaluated. For the groups classified using spirometry, SSc resulted in increased values in Ri, R, Rp and Z4Hz (p<0.003) and reductions in Crs,dyn, C and Xm (p<0.004). Z4Hz, C and Crs,dyn exhibited a high diagnostic accuracy (AUC>0.90). In groups classified by pulmonary volume, SSc resulted in reductions in S, Xm, C and Crs,dyn (p<0.01). Xm, C and Crs,dyn exhibited adequate diagnostic accuracy (AUC>0.80). It was also observed that EFL is not common in patients with SSc.Conclusions/SignificanceThis study provides evidence that the respiratory resistance and reactance are changed in SSc. This analysis provides a useful description that is of particular significance for understanding respiratory pathophysiology and to ease the diagnosis of respiratory abnormalities in these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.