BackgroundPulmonary complications are the most common cause of death and morbidity in systemic sclerosis (SSc). The forced oscillation technique (FOT) offers a simple and detailed approach to investigate the mechanical properties of the respiratory system. We hypothesized that SSc may introduce changes in the resistive and reactive properties of the respiratory system, and that FOT may help the diagnosis of these abnormalities.Methodology/Principal FindingsWe tested these hypotheses in controls (n = 30) and patients with abnormalities classified using spirometry (n = 52) and pulmonary volumes (n = 29). Resistive data were interpreted with the zero-intercept resistance (Ri) and the slope of the resistance (S) as a function of frequency. Reactance changes were evaluated by the mean reactance between 4 and 32 Hz (Xm) and the dynamic compliance (Crs,dyn). The mechanical load was evaluated using the absolute value of the impedance in 4 Hz (Z4Hz). A compartmental model was used to obtain central (R) and peripheral (Rp) resistances, and alveolar compliance (C). The clinical usefulness was evaluated by investigating the area under the receiver operating characteristic curve (AUC). The presence of expiratory flow limitation (EFL) was also evaluated. For the groups classified using spirometry, SSc resulted in increased values in Ri, R, Rp and Z4Hz (p<0.003) and reductions in Crs,dyn, C and Xm (p<0.004). Z4Hz, C and Crs,dyn exhibited a high diagnostic accuracy (AUC>0.90). In groups classified by pulmonary volume, SSc resulted in reductions in S, Xm, C and Crs,dyn (p<0.01). Xm, C and Crs,dyn exhibited adequate diagnostic accuracy (AUC>0.80). It was also observed that EFL is not common in patients with SSc.Conclusions/SignificanceThis study provides evidence that the respiratory resistance and reactance are changed in SSc. This analysis provides a useful description that is of particular significance for understanding respiratory pathophysiology and to ease the diagnosis of respiratory abnormalities in these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.