Navigational and social challenges due to habitat conditions and sociality are known to influence dentate gyrus (DG) morphology, yet the relative importance of these factors remains unclear. Thus, we studied three natural populations of O. lunatus (Los Molles) and Octodon degus (El Salitre and Rinconada), two caviomorph species that differ in the extent of sociality and with contrasting vegetation cover of habitat used. The brains and DG of male and female breeding degus with simultaneous information on their physical and social environments were examined. The extent of sociality was quantified from total group size and range area overlap. O. degus at El Salitre was more social than at Rinconada and than O. lunatus from Los Molles. The use of transects to quantify cover of vegetation (and other physical objects in the habitat) and measures of the spatial behavior of animals indicated animal navigation based on unique cues or global landmarks is more cognitively challenging to O. lunatus. During lactation, female O. lunatus had larger brains than males. Relative DG volume was similar across sexes and populations. The right hemisphere of male and female O. lunatus had more cells than the left hemisphere, with DG directional asymmetry not found in O. degus. Degu population differences in brain size and DG cell number seemed more responsive to differences in habitat than to differences in sociality. Yet, large-sized O. degus (but not O. lunatus) that ranged over larger areas and were members of larger social groups had more DG cells per hemisphere. Thus, within-population variation in DG cell number by hemisphere was consistent with a joint influence of habitat and sociality in O. degus at El Salitre.
Homophily by morphological and behavioral traits has been described in several species of vertebrates, but its functional consequences remain poorly studied. Homophily by plurally breeding females may improve direct fitness by enhancing reproductive success. Female mammals may exhibit phenotypical masculinization due to exposure to androgens during early development, a condition that is associated with maternal performance during subsequent breeding. Our goal was to assess whether female composition (in terms of masculinization) of plurally breeding groups influences female fitness in a natural population of degus (Octodon degus). We assessed if plurally breeding female degus assort themselves by anogenital distance (AGD), an accurate measure of masculinization level. We also quantified if homophily by AGD phenotype affects female reproductive success and the reproductive output of the group. Plurally breeding groups typically included similarly masculinized (i.e., long AGD) females or similarly feminized (short AGD) females, indicating a strong degree of homophily. Females weaned more offspring in plurally breeding groups with more masculinized females. Additionally, standardized variance in the number of offspring weaned decreased in plurally breeding groups with mostly masculinized females, indicating greater reproductive equality in these groups. We conclude that female degus organize into homophilic social groups of similar AGD, and that social groups of masculinized females exhibit a higher reproductive success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.