This article has been developed to assess the economic feasibility of a rooftop photovoltaic installation of industrial self-consumption. Numerical models that enable an interested person to obtain the main expected parameters will be generated, with those models being the article’s main contribution to the field. To do this, a calculation methodology will be developed through which the reader, knowing the location of the facility and dimensions of the roof, will be able to calculate the maximum installable power, the main parameters related to production, the cost of the installation, and the LCOE of the plant. The use of actual costs will be facilitated in case they are known. Still, it will remain possible to apply the major equipment costs (modules, inverter, and structure) considered throughout the article. This developed calculation methodology will also allow a quick comparison of the forecasts of production, CAPEX, and LCOE of plants designed with different inclinations and different types of modules. Consequently, it will be especially useful in decision-making before developing the plant’s basic engineering. Moreover, the calculations used for modeling the LCOE will be analyzed in depth. This analysis will allow evaluating how the different technical variables affect the profitability of a photovoltaic installation, such as the selected tilt, the location, the module’s technology, or the available area.
This article has been developed to assess the economic feasibility of a roof-top photovoltaic installation of industrial self-consumption. Numerical models that enable an interested person to obtain the main expected parameters will be generated. To do this, a calculation methodology will be generated through which the reader, knowing the location of the facility and dimensions of the roof, will be able to calculate the maximum installable power, the main parameters related to production, the cost of the installation, and the LCOE of the plant. The use of actual costs will be facilitated in case they are known, but it will remain possible to apply the costs of the major equipment (modules, inverter, and structure) considered throughout the article. This developed calculation methodology will also allow a quick comparison of the forecasts of production, CAPEX, and LCOE of plants designed with different inclinations and different types of modules. Consequently, it will be especially useful for decision-making before developing the plant's basic engineering. Moreover, the calculations used for modeling the LCOE will be analyzed in depth. This analysis will allow evaluating how the different technical variables affect the profitability of a photovoltaic installation, such as the selected tilt, the location, the module's technology, or the available area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.