Predation involves more than just predators consuming prey. Indirect effects, such as fear responses caused by predator presence, can have consequences for prey life history. Laboratory experiments have shown that some rodents can recognize fear in conspecifics via alarm pheromones. Individuals exposed to alarm pheromones can exhibit behavioural alterations that are similar to those displayed by predator-exposed individuals. Yet the ecological and evolutionary significance of alarm pheromones in wild mammals remains unclear. We investigated how alarm pheromones affect the behaviour and fitness of wild bank voles (Myodes glareolus) in outdoor enclosures. Specifically, we compared the effects of exposure of voles living in a natural environment to a second-hand fear cue, bedding material used by predator-exposed voles. Control animals were exposed to bedding used by voles with no predator experience. We found a ca. 50% increase in litter size in the group exposed to the predator cue. Furthermore, female voles were attracted to and males were repelled by trap-associated bedding that had been used by predator-exposed voles. Movement and foraging were not significantly affected by the treatment. Our results suggest that predation risk can exert population-level effects through alarm pheromones on prey individuals that did not encounter a direct predator cue.
1. In a landscape consisting primarily of intensive forestry interspersed with some protected areas, multifunctional forestry with retention trees can play a crucial role in nature conservation. Accurate mapping of retention trees is important for guiding landscape-level conservation and forest management and improving landscape connectivity. Sizeable dead and living retention trees play a particularly important ecological role but even their large-scale inventory is often intensive through field work and/or inaccurate. We aimed to detect and classify retention trees using the novel nationwide Finnish airborne laser scanning (ALS) data (~5 pulses/m 2 ) in conjunction with unrectified colour-infrared (CIR) aerial imagery. 2. Applying photogrammetric principles, we added spectral information from the CIR imagery to the ALS-derived point cloud. For a training dataset of 160 retention trees from 19 stands and a geographically separate validation dataset of 79 trees from eight stands, we segmented trees via individual tree detection (ITD), removed most trees belonging to the regenerating vegetation layer, and classified trees into living conifers, living broadleaves and dead trees by linear discriminant analysis.3. The detection rate via ITD differed considerably for dead and living trees, with 41.7% of all dead and 83.8% of all living trees being detected with relatively low commission error rates. Dead trees with smaller diameters and heights were more likely missed, while grouping caused living tree omission. For classification into living conifers, living broadleaves and dead trees, an overall accuracy of 67.3% was achieved in training and 71.2% in validation using only ALS-derived metrics. When adding spectral metrics, the overall accuracies were 79.6% and 61.0% for training and validation respectively. 4. Our findings imply that wall-to-wall large-scale high density ALS data can be used to detect retention trees rather accurately-even larger dead trees-and that metrics derived solely from ALS data can accurately classify detected retention trees into living conifers, living broadleaves and dead trees. Considering the ecological value of retention trees, our results are promising and indicate that
Current remote sensing methods can provide detailed tree species classification in boreal forests. However, classification studies have so far focused on the dominant tree species, with few studies on less frequent but ecologically important species. We aimed to separate European aspen ( tremula L.), a biodiversity-supporting tree species, from the more common species in European boreal forests ( L., [L.] Karst., spp.). Using multispectral drone images collected on five dates throughout one thermal growing season (MayâSeptember), we tested the optimal season for the acquisition of mono-temporal data. These images were collected from a mature, unmanaged forest. After conversion into photogrammetric point clouds, we segmented crowns manually and automatically and classified the species by linear discriminant analysis. The highest overall classification accuracy (95%) for the four species as well as the highest classification accuracy for aspen specifically (userâs accuracy of 97% and a producerâs accuracy of 96%) were obtained at the beginning of the thermal growing season (13 May) by manual segmentation. On 13 May, aspen had no leaves yet, unlike birches. In contrast, the lowest classification accuracy was achieved on 27 September during the autumn senescence period. This is potentially caused by high intraspecific variation in aspen autumn coloration but may also be related to our date of acquisition. Our findings indicate that multispectral drone images collected in spring can be used to locate and classify less frequent tree species highly accurately. The temporal variation in leaf and canopy appearance can alter the detection accuracy considerably.PopulusPinus sylvestrisPicea abiesBetula
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.