Co-ground powders of the poorly water-soluble drug nifedipine and a hydrophilic carrier, [partially hydrolyzed gelatin (PHG), polyvinylpyrrolidone (PVP), sodium dodecyl sulfate (SDS), hydroxypropyl methylcellulose (HPMC), polyethylene glycol (PEG), urea or Pluronic F108] were prepared in order to improve the dissolution rate of nifedipine. The effects of type of grinding equipment, grinding time, and type of hydrophilic carrier on the crystallinity of nifedipine (x-ray diffraction and differential scanning calorimetry) on the interaction between drug and carriers (differential scanning calorimetry), on the particle size and appearance (scanning electron microscopy), on the wettability (contact angle measurements), and on the drug release were investigated. Grinding nifedipine together with these carriers improved the dissolution rate. PHG-ground mixtures resulted in the fastest dissolution rate followed by PVP, SDS, HPMC, Pluronic, urea, and PEG. This effect was not only due to particle size reduction, which increased in the order PHG
Purpose: To enhance the dissolution rate of the poorly soluble drug atorvastatin calcium (ATC) by cocrystallization with selected coformers. Enhancement of the dissolution rate and solubility of the drug, which is classified as Class II of the Biopharmaceutical Classification System (BCS), is expected to enhance the bioavailability.Methods: Two methods were used for preparing the cocrystals, solvent drop grinding (SDG) and solvent evaporation (SE) method using 1:1, 1:3, and 1:10 drug-coformer molar ratios. Glucosamine hydrochloride (GluN) and nicotinamide (NIC) were investigated as coformers. The cocrystals, their physical mixtures, and the raw ATC were characterized by fourier transform infrared (FTIR spectroscopy), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), mass spectroscopy (MS), scanning electron microscopy (SEM), solubility, and dissolution rate studies. Results: SDG and SE were effective in improving the dissolution rate of ATC with both coformers. Drug: coformer ratio 1:3 was optimum. The solubility values for ATC, GluN-, and NIC-cocrystals were 26, to 35 and 50 µg/mL, respectively. The dissolution rate of ATC from cocrystals was > 90% after 5 minutes, compared to 41% untreated ATC. Conclusion: Cocrystallization significantly improved the solubility and dissolution, in comparison to the untreated ATC.
The aim of this study was to formulate salbutamol sulfate (SS), a model drug, as mucoadhesive in situ gelling inserts having a high potential as nasal drug delivery system bypassing the first-pass metabolism. In situ gelling inserts, each containing 1.4% SS and 2% gel-forming polymer, hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose sodium (CMC Na), sodium alginate (AL), and chitosan (CH) were prepared. The inserts were investigated for their different physicochemical properties. The weight of inserts was 16-27 mg, drug content was 3.9-4.2 mg, thickness ranged between 15 and 28 μm and surface pH was 5-7. Cumulative drug released from the inserts exhibited extended release for more than 10 h following the decreasing order: CH>AL>CMC Na>HPMC. The drug release from CMC Na and AL inserts followed zero-order kinetics while HPMC and CH inserts exhibited non-Fickian diffusion mechanism. The inserts exhibited different water uptake (7-23%) with the smallest values for CH. Differential scanning calorimetry study pointed out possible interaction of SS and oppositely charged anionic polymers (CMC Na and AL). The mucoadhesive in situ gelling inserts exhibited satisfactory mucoadhesive and extended drug release characteristics. The inserts could be used for nasal delivery of SS over about 12 h; bypassing the hepatic first-pass metabolism without potential irritation.
It was thus concluded that SD formulations of GLC can be successfully used to design a solid dosage form of the drug, which would have significant advantages over the current marketed tablets.
Development of novel formulations to enhance in vivo transdermal permeation of tocopherolTocopherol represents a big challenge for transdermal permeation owing to its extreme hydrophobicity and large mole cular mass. The aim of the present study was to develop alpha-tocopherol (T) topical formulations and evaluate their ex vivo and in vivo permeation. Franz diffusion cells were used for ex vivo permeation, and neonatal rats were used for in vivo permeation. Seven gel formulations and 21 liquid formulations were investigated for physical stability, viscosity and permeation of T. Analysis of T was performed by a validated HPLC method using a UV detector. The ex vivo permeation from gel and emulsion formulations was very poor (0.001-0.015 %). Highest permeation was observed from monophasic liquid formulations containing dimethyl sulfoxide (DMSO), tocopheryl polyethylene glycols (TPGs), propylene glycol, ethanol and 9.5 % T. The in vivo results demonstrated higher retention in the epidermis compared to subcutaneous tissues, 1377 and 1.13 µg g -1, respectively. Increasing T concentration from 4.8 to 9.5 % did not increase the amount permeated or % of T retained. It was concluded that simple solutions of T in the presence of DMSO and TPGs were more promising systems for effective transdermal permeation compared to gel, emulsion or oleaginous systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.