We studied oleogels containing zinc oxide nanoparticles (ZnO NPs) and lupane triterpenoids in sunflower oil for the treatment of burns. The modification of ZnO was carried out by treatment with alcohol solutions of betulin, betulonic acid, betulin diacetate and betulin diphosphate. The properties of modified ZnO NPs were studied by powder XRD (average sizes of 10–20 nm), FTIR (νZnO 450 cm−1), UV–vis (345–360 nm), and blue–violet emission (380–420 nm). The identification and assay of modified ZnO NPs and triterpenoids were estimated. The treatment by oleogels of deep II-degree burns was studied on rats using histological studies, Doppler flowmetry and evaluation of enzymes activity and malonic dialdehyde (MDA) level. After the action of oleogels, burn wound area, and the necrosis decreased twice on the 10th day in comparison with the 1st day after burn. The microcirculation index in the near-wound zone by 20–30% improved compared with the group without treatment. Evaluation of the enzyme activity and the MDA level after treatment by oleogels during the course of 10 days showed them returning to normal. The improvement of antioxidant biochemical indexes, as well as wounds’ healing, was mainly determined by the influence of zinc oxide nanoparticles.
Preliminary protection of zinc oxide nanoparticles (ZnO NPs) with terpenoids such as betulin, its derivatives, and essential oils components has been proposed to produce gel-like oleophilic and hydrophilic formulations. We studied the properties of gel-like dispersions of ZnO NPs with immobilized terpenoids and their effects on the activity of LDH, GR, G6PDH, restoration of redox balance of co-enzyme pairs NAD+/NADH and NADP+/NADPH, as well as the activity of SOD, catalase, AlDH in erythrocytes in the treatment of burns in rats. Hysteresis loops on the rheograms of studied dispersions characterize their thixotropic properties. ZnO NPs with betulin diphosphate in the water–ethanol medium lead to a 20-fold increase in the hydrodynamic radius at pH 7.3 compared to the initial ZnO NPs, and facilitate the formation of Zn2+ ions and their penetration into the viable epidermis, unlike oleophilic dispersions. All dispersions reduce the healing time by one and a half times compared with the untreated control group, increase the activity of LDH, GR, G6PDH, SOD, catalase, AlDH, and contribute to the normalization of coenzyme balance. Normalization of the redox balance and wound state was more effective using hydrophilic dispersions due to Zn2 + penetration.
Zinc oxide nanoparticles (ZnO NPs) modified by oxopyrymidine alcohol, also known as xymedone (Xym), were obtained and studied using FTIR, UV-vis, and fluorescent spectroscopy, and SEM, BET, powder XRD, and DLS analysis. A formulation of thixotropic hydrophilic gels containing Carbopol-based Xym and ZnO NPs was developed. A vertical Franz cell with a cellulose acetate membrane was used as a model to investigate the passive diffusion of the gel components by AAS. The gel components—Xym and ZnO NPs—were shown to penetrate through acetyl cellulose membrane within 5–7 h depending on an initial amount, and its values were in the range of 56–77%. The penetration of modified ZnO NPs by Xym was more effective in contrast to ZnO NPs without modification. The burn wound healing activity of ZnO NPs–Xym gel was demonstrated on a thermal burn wound model on rats. SOD and GR activity was increased by 30–35% during ZnO NPs–Xym gel treatment, the burn area on 10 postburn day decreased by 10% in contrast to a positive control, Methyluracyl®® ointment.
The inhibition of platelet aggregation, and the activity of oxidoreductases and microhemocirculation in a burn wound on the treatment of burns with wound dressings based on bacterial nanocellulose (BC)-zinc oxide nanoparticles (ZnO NPs)-betulin diphosphate (BDP) were studied. The control of the treatment by BC-ZnO NPs-BDP on burned rats by the noninvasive DLF method showed an increase in perfusion and the respiratory component in wavelet spectra, characterizing an improvement in oxygen saturation in the wound. The study on the volunteers’ blood found the inhibition of ADP-induced platelet aggregation by 30–90%. Disaggregation depends on the dose under the action of the ionized form of BDP and ZnO NPs-BDP in a phosphate buffer; it was reversible and had two waves. It was shown on rats that the specific activity of LDHreverse and LDHdirect (control-intact animals) on day 21 of treatment increased by 11–38% and 23%, respectively. The LDHreverse/LDHdirect ratio increased at BC-ZnO NPs-BDP treatment, which characterizes efficient NAD+ regeneration. AlDH activity increased significantly in the first 10 days by 70–170%, reflecting the effectiveness of the enzyme and NAD+ in utilizing toxic aldehydes at this stage of burn disease. The activities of GR and G6PDH using NADP(H) were increased with BC-ZnO NPs-BDP treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.