We present parallel algorithms to efficiently permute a sorted array into the level-order binary search tree (BST), level-order B-tree (B-tree), and van Emde Boas (vEB) layouts in-place. We analytically determine the complexity of our algorithms and empirically measure their performance. Given N elements and P processors, our fastest algorithms have a parallel runtime of O N P for the BST layout, O N P + log B N log B N for the B-tree layout, and O N P log log N for the vEB layout using the CREW Parallel Random Access Machine (PRAM) model. Experimental results indicate that on both CPU and GPU architectures, the B-tree layout provides the best query performance. However, when considering the total time to permute the data using our algorithms and to perform a series of search queries, the vEB layout provides the best performance on the CPU. We show that given an input of N=500M 64-bit integers, the benefits of query performance (compared to binary search) outweigh the cost of in-place permutation using our algorithms when performing at least 5M queries (1% of N) and 27M queries (6% of N), on our CPU and GPU platforms, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.