Background: Telocytes (TCs) are unique interstitial or stromal cells of mesodermal origin, defined by long cellular extensions called telopodes (Tps) which form a network, connecting them to surrounding cells. TCs were previously found around stem and progenitor cells, and were thought to be most likely involved in local tissue metabolic equilibrium and regeneration. The roles of telocytes are still under scientific scrutiny, with existing studies suggesting they possess various functions depending on their location. Methods: Human myometrium biopsies were collected from pregnant and non-pregnant women, telocytes were then investigated in myometrial interstitial cell cultures based on morphological criteria and later prepared for time-lapse microscopy. Semi-analytical and numerical solutions were developed to highlight the geometric characteristics and the behavior of telocytes. Results: Results were gathered in a database which would further allow efficient telocyte tracking and indexing in a content-based image retrieval (CBIR) of digital medical images. Mathematical analysis revealed pivotal information regarding the homogeneity, hardness and resistance of telocytes’ structure. Cellular activity models were monitored in vitro, therefore supporting the creation of databases of telocyte images. Conclusions: The obtained images were analyzed, using segmentation techniques and mathematical models in conjunction with computer simulation, in order to depict TCs behavior in relation to surrounding cells. This paper brings an important contribution to the development of bioinformatics systems by creating software-based telocyte models that could be used both for diagnostic and educational purposes.
In lumbar disc herniation a possible functional problem in the ambulation is the Foot-drop syndrome caused by radicular nerve pinching. This causes a dramatic loss in gait cycle efficiency. In the rehabilitation process patients may benefit from wearing a foot orthosis that prevents them from falling and secondary injuries. Evidence in the literature suggests the important correlation between the optimal match of the forces produced during human gait and the rigidity of the constructive materials. The inherent rigidity of the materials plays an important role in determining its biomechanical functions. The paper proposes an experimental and numerical characterization of 3D printed ABS and PLA specimens using a universal traction-compression testing machine and a finite element method numerical simulation.
An external three component strain gauge balance, designed, analyzed and manufactured in the Military Technical Academy is presented. The balance is a multi-piece type and employs the use of six custom-made load cells (sensors) to transfer the aerodynamic forces and moments from the wing to the computer software environment for data processing and analysis. The relations between the loads acting on the wing model and the measured forces are also underlined. The placement of the strain gauge on the composite laminate is an important issue for increased sensor precision; therefore, it is given a thorough analysis. The positioning of the force vector and its influence on the strain distribution over the lift sensor is also numerically and experimentally analyzed.
To protect the personnel of the intervention units operating in high-risk areas, it is necessary to introduce (autonomous/semi-autonomous) robotic intervention systems. Previous studies have shown that robotic intervention systems should be as versatile as possible. Here, we focused on the idea of a robotic system composed of two vectors: a carrier vector and an operational vector. The proposed system particularly relates to the carrier vector. A simple analytical model was developed to enable the entire robotic assembly to be autonomous. To validate the analytical-numerical model regarding the kinematics and dynamics of the carrier vector, two of the following applications are presented: intervention for extinguishing a fire and performing measurements for monitoring gamma radiation in a public enclosure. The results show that the chosen carrier vector solution, i.e., the ground vehicle with six-wheel drive, satisfies the requirements related to the mobility of the robotic intervention system. In addition, the conclusions present the elements of the kinematics and dynamics of the robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.