Cannabinoids inhibit tumor angiogenesis in mice, but the mechanism of their antiangiogenic action is still unknown. Because the vascular endothelial growth factor (VEGF) pathway plays a critical role in tumor angiogenesis, here we studied whether cannabinoids affect it. As a first approach, cDNA array analysis showed that cannabinoid administration to mice bearing s.c. gliomas lowered the expression of various VEGF pathway-related genes. The use of other methods (ELISA, Western blotting, and confocal microscopy) provided additional evidence that cannabinoids depressed the VEGF pathway by decreasing the production of VEGF and the activation of VEGF receptor (VEGFR)-2, the most prominent VEGF receptor, in cultured glioma cells and in mouse gliomas. Cannabinoid-induced inhibition of VEGF production and VEGFR-2 activation was abrogated both in vitro and in vivo by pharmacological blockade of ceramide biosynthesis. These changes in the VEGF pathway were paralleled by changes in tumor size. Moreover, intratumoral administration of the cannabinoid ⌬ 9 -tetrahydrocannabinol to two patients with glioblastoma multiforme (grade IV astrocytoma) decreased VEGF levels and VEGFR-2 activation in the tumors. Because blockade of the VEGF pathway constitutes one of the most promising antitumoral approaches currently available, the present findings provide a novel pharmacological target for cannabinoid-based therapies.
Cannabinoids exert most of their effects through the CB(1) receptor. This G-protein-coupled receptor has been shown to be functionally coupled to inhibition of adenylyl cyclase, modulation of ion channels, and activation of extracellular signal-regulated kinase. Using Chinese hamster ovary cells stably transfected with the CB(1) receptor cDNA, we show here that Delta(9)-tetrahydrocannabinol (THC), the major active component of marijuana, induces the activation of c-Jun N-terminal kinase (JNK). Western blot analysis showed that both JNK-1 and JNK-2 were stimulated by THC. The effect of THC was also exerted by endogenous cannabinoids (anandamide and 2-arachidonoylglycerol) and synthetic cannabinoids (CP-55,940, HU-210, and methanandamide), and was prevented by the selective CB(1) antagonist SR141716. Pertussis toxin, wortmannin, and a Ras farnesyltransferase inhibitor peptide blocked, whereas mastoparan mimicked, the CB(1) receptor-evoked activation of JNK, supporting the involvement of a G(i)/G(o)-protein, phosphoinositide 3'-kinase and Ras. THC-induced JNK stimulation was prevented by tyrphostin AG1296, pointing to the implication of platelet-derived growth factor receptor transactivation, and was independent of ceramide generation. Experiments performed with several types of neural cells that endogenously express the CB(1) receptor suggested that long-term JNK activation may be involved in THC-induced cell death. The CB(1) cannabinoid receptor was also shown to be coupled to the activation of p38 mitogen-activated protein kinase. Data indicate that activation of JNK and p38 mitogen-activated protein kinase may be responsible for some of the cellular responses elicited by the CB(1) cannabinoid receptor.
Cannabinoids, the active components of Cannabis sativa L. and their derivatives, inhibit tumor growth in laboratory animals by inducing apoptosis of tumor cells and impairing tumor angiogenesis. It has also been reported that these compounds inhibit tumor cell spreading, but the molecular targets of this cannabinoid action remain elusive. Here, we evaluated the effect of cannabinoids on matrix metalloproteinase (MMP) expression and its effect on tumor cell invasion. Local administration of # 9 -tetrahydrocannabinol (THC), the major active ingredient of cannabis, downregulated MMP-2 expression in gliomas generated in mice, as determined by Western blot, immunofluorescence, and real-time quantitative PCR analyses. This cannabinoidinduced inhibition of MMP-2 expression in gliomas (a) was MMP-2-selective, as levels of other MMP family members were unaffected; (b) was mimicked by JWH-133, a CB 2 cannabinoid receptor-selective agonist that is devoid of psychoactive side effects; (c) was abrogated by fumonisin B1, a selective inhibitor of ceramide biosynthesis; and (d) was also evident in two patients with recurrent glioblastoma multiforme. THC inhibited MMP-2 expression and cell invasion in cultured glioma cells. Manipulation of MMP-2 expression by RNA interference and cDNA overexpression experiments proved that down-regulation of this MMP plays a critical role in THCmediated inhibition of cell invasion. Cannabinoid-induced inhibition of MMP-2 expression and cell invasion was prevented by blocking ceramide biosynthesis and by knocking-down the expression of the stress protein p8. As MMP-2 up-regulation is associated with high progression and poor prognosis of gliomas and many other tumors, MMP-2 downregulation constitutes a new hallmark of cannabinoid antitumoral activity. [Cancer Res 2008;68(6):1945-52]
Delta(9)-Tetrahydrocannabinol (THC) and other cannabinoids have been shown to induce apoptosis of glioma cells via ceramide generation. In the present study, we investigated the metabolic origin of the ceramide responsible for this cannabinoid-induced apoptosis by using two subclones of C6 glioma cells: C6.9, which is sensitive to THC-induced apoptosis; and C6.4, which is resistant to THC-induced apoptosis. Pharmacological inhibition of ceramide synthesis de novo, but not of neutral and acid sphingomyelinases, prevented THC-induced apoptosis in C6.9 cells. The activity of serine palmitoyltransferase (SPT), which catalyses the rate-limiting step of ceramide synthesis de novo, was remarkably enhanced by THC in C6.9 cells, but not in C6.4 cells. However, no major changes in SPT mRNA and protein levels were evident. Changes in SPT activity paralleled changes in ceramide levels. Pharmacological inhibition of ceramide synthesis de novo also prevented the stimulation of extracellular-signal-regulated kinase and the inhibition of protein kinase B triggered by cannabinoids. These findings show that de novo-synthesized ceramide is involved in cannabinoid-induced apoptosis of glioma cells.
Cannabinoids, the active components of Cannabis sativa L., act in the body by mimicking endogenous substances--the endocannabinoids--that activate specific cell surface receptors. Cannabinoids exert various palliative effects in cancer patients. In addition, cannabinoids inhibit the growth of different types of tumor cells, including glioma cells, in laboratory animals. They do so by modulating key cell signaling pathways, mostly the endoplasmic reticulum stress response, thereby inducing antitumoral actions such as the apoptotic death of tumor cells and the inhibition of tumor angiogenesis. Of interest, cannabinoids seem to be selective antitumoral compounds, as they kill glioma cells, but not their non-transformed astroglial counterparts. On the basis of these preclinical findings, a pilot clinical study of Delta(9)-tetrahydrocannabinol (THC) in patients with recurrent glioblastoma multiforme has been recently run. The good safety profile of THC, together with its possible growth-inhibiting action on tumor cells, justifies the setting up of future trials aimed at evaluating the potential antitumoral activity of cannabinoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.