Delta9-Tetrahydrocannabinol, the main active component of marijuana, induces apoptosis of transformed neural cells in culture. Here, we show that intratumoral administration of Delta9-tetrahydrocannabinol and the synthetic cannabinoid agonist WIN-55,212-2 induced a considerable regression of malignant gliomas in Wistar rats and in mice deficient in recombination activating gene 2. Cannabinoid treatment did not produce any substantial neurotoxic effect in the conditions used. Experiments with two subclones of C6 glioma cells in culture showed that cannabinoids signal apoptosis by a pathway involving cannabinoid receptors, sustained ceramide accumulation and Raf1/extracellular signal-regulated kinase activation. These results may provide the basis for a new therapeutic approach for the treatment of malignant gliomas.
Endocannabinoids (eCBs) have recently been identified as axon guidance cues shaping the connectivity of local GABAergic interneurons in the developing cerebrum. However, eCB functions during pyramidal cell specification and establishment of longrange axonal connections are unknown. Here, we show that eCB signaling is operational in subcortical proliferative zones from embryonic day 12 in the mouse telencephalon and controls the proliferation of pyramidal cell progenitors and radial migration of immature pyramidal cells. When layer patterning is accomplished, developing pyramidal cells rely on eCB signaling to initiate the elongation and fasciculation of their long-range axons. Accordingly, CB 1 cannabinoid receptor (CB1R) null and pyramidal cellspecific conditional mutant (CB 1R f/f,NEX-Cre ) mice develop deficits in neuronal progenitor proliferation and axon fasciculation. Likewise, axonal pathfinding becomes impaired after in utero pharmacological blockade of CB 1Rs. Overall, eCBs are fundamental developmental cues controlling pyramidal cell development during corticogenesis.excitation ͉ glutamate ͉ layer patterning ͉ neocortex ͉ neurogenesis P yramidal cell specification follows a sequential scenario in the developing cerebrum: commitment of progenitor cells to the neuronal lineage occurs in the subcortical proliferative ventricular zone (VZ) and subventricular zone (SVZ). Immature pyramidal cells undergo radial migration to populate the cortical plate (CP) (1), where they acquire layer-specific neurochemical and morphological diversity (2). Pyramidal cell positioning and patterning of their corticofugal and intracortical axons is in part achieved via transcriptional control acting throughout cellular identification (2). However, epigenetic microenvironmental cues, provided by neural progenitors, radial glia, and immature neurons, are also fundamental in attaining cortical cell identity with particularly robust effects on pathfinding and directional growth of long-range axons (3).Endocannabinoids [eCBs; anandamide (AEA) and 2-arachidonoylglycerol] control various forms of synaptic plasticity at cortical glutamatergic synapses in the postnatal brain (4) through functional CB 1 cannabinoid receptors (CB 1 Rs) (5). During brain development, eCBs control neuronal fate decision (6), interneuron migration (7), and axonal specification (8). Developmental eCB actions are underpinned by a temporally defined assembly of functional eCB signaling networks with coincident expression of sn-1-diacylglycerol lipases (DAGL␣/) (9) and N-arachidonoyl-phosphatidyl ethanolamine (NAPE)-selective phospholipase D involved in eCB synthesis, fatty-acid amide hydrolase (FAAH) (an enzyme preferentially degrading AEA), and CB 1 Rs (8). The selective axonal targeting of CB 1 Rs and DAGLs in immature neurons suggests that eCBs may function in either cell-autonomous (6, 9) or target-derived (8) manner to control axonal elongation and postsynaptic target selection, respectively.Although recent findings in both mammals (8) and nonmammalian v...
The discovery of multipotent neural progenitor (NP) cells has provided strong support for the existence of neurogenesis in the adult brain. However, the signals controlling NP proliferation remain elusive. Endocannabinoids, the endogenous counterparts of marijuana-derived cannabinoids, act as neuromodulators via presynaptic CB1 receptors and also control neural cell death and survival. Here we show that progenitor cells express a functional endocannabinoid system that actively regulates cell proliferation both in vitro and in vivo. Specifically, NPs produce endocannabinoids and express the CB1 receptor and the endocannabinoid-inactivating enzyme fatty acid amide hydrolase (FAAH). CB1 receptor activation promotes cell proliferation and neurosphere generation, an action that is abrogated in CB1-deficient NPs. Accordingly, proliferation of hippocampal NPs is increased in FAAH-deficient mice. Our results demonstrate that endocannabinoids constitute a new group of signaling cues that regulate NP proliferation and thus open novel therapeutic avenues for manipulation of NP cell fate in the adult brain.
Cannabinoid-derived drugs are promising agents for the development of novel neuroprotective strategies. Activation of neuronal CB(1) cannabinoid receptors attenuates excitotoxic glutamatergic neurotransmission, triggers prosurvival signalling pathways and palliates motor symptoms in animal models of neurodegenerative disorders. However, in Huntington's disease there is a very early downregulation of CB(1) receptors in striatal neurons that, together with the undesirable psychoactive effects triggered by CB(1) receptor activation, foster the search for alternative pharmacological treatments. Here, we show that CB(2) cannabinoid receptor expression increases in striatal microglia of Huntington's disease transgenic mouse models and patients. Genetic ablation of CB(2) receptors in R6/2 mice, that express human mutant huntingtin exon 1, enhanced microglial activation, aggravated disease symptomatology and reduced mice lifespan. Likewise, induction of striatal excitotoxicity in CB(2) receptor-deficient mice by quinolinic acid administration exacerbated brain oedema, microglial activation, proinflammatory-mediator state and medium-sized spiny neuron degeneration. Moreover, administration of CB(2) receptor-selective agonists to wild-type mice subjected to excitotoxicity reduced neuroinflammation, brain oedema, striatal neuronal loss and motor symptoms. Studies on ganciclovir-induced depletion of astroglial proliferation in transgenic mice expressing thymidine kinase under the control of the glial fibrillary acidic protein promoter excluded the participation of proliferating astroglia in CB(2) receptor-mediated actions. These findings support a pivotal role for CB(2) receptors in attenuating microglial activation and preventing neurodegeneration that may pave the way to new therapeutic strategies for neuroprotection in Huntington's disease as well as in other neurodegenerative disorders with a significant excitotoxic component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.