Alzheimer's disease (AD) is characterized by enhanced -amyloid peptide (A) deposition along with glial activation in senile plaques, selective neuronal loss, and cognitive deficits. Cannabinoids are neuroprotective agents against excitotoxicity in vitro and acute brain damage in vivo. This background prompted us to study the localization, expression, and function of cannabinoid receptors in AD and the possible protective role of cannabinoids after A treatment, both in vivo and in vitro. Here, we show that senile plaques in AD patients express cannabinoid receptors CB 1 and CB 2 , together with markers of microglial activation, and that CB 1 -positive neurons, present in high numbers in control cases, are greatly reduced in areas of microglial activation. In pharmacological experiments, we found that G-protein coupling and CB 1 receptor protein expression are markedly decreased in AD brains. Additionally, in AD brains, protein nitration is increased, and, more specifically, CB 1 and CB 2 proteins show enhanced nitration. Intracerebroventricular administration of the synthetic cannabinoid WIN55,212-2 to rats prevent A-induced microglial activation, cognitive impairment, and loss of neuronal markers. Cannabinoids (HU-210, WIN55,212-2, and JWH-133) block A-induced activation of cultured microglial cells, as judged by mitochondrial activity, cell morphology, and tumor necrosis factor-␣ release; these effects are independent of the antioxidant action of cannabinoid compounds and are also exerted by a CB 2 -selective agonist. Moreover, cannabinoids abrogate microglia-mediated neurotoxicity after A addition to rat cortical cocultures. Our results indicate that cannabinoid receptors are important in the pathology of AD and that cannabinoids succeed in preventing the neurodegenerative process occurring in the disease.
Autophagy can promote cell survival or cell death, but the molecular basis underlying its dual role in cancer remains obscure. Here we demonstrate that Δ 9 -tetrahydrocannabinol (THC), the main active component of marijuana, induces human glioma cell death through stimulation of autophagy. Our data indicate that THC induced ceramide accumulation and eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and thereby activated an ER stress response that promoted autophagy via tribbles homolog 3-dependent (TRB3-dependent) inhibition of the Akt/mammalian target of rapamycin complex 1 (mTORC1) axis. We also showed that autophagy is upstream of apoptosis in cannabinoid-induced human and mouse cancer cell death and that activation of this pathway was necessary for the antitumor action of cannabinoids in vivo. These findings describe a mechanism by which THC can promote the autophagic death of human and mouse cancer cells and provide evidence that cannabinoid administration may be an effective therapeutic strategy for targeting human cancers. IntroductionMacro-autophagy, hereafter referred to as "autophagy," is a highly conserved cellular process in which cytoplasmic materials - including organelles - are sequestered into double-membrane vesicles called autophagosomes and delivered to lysosomes for degradation or recycling (1). In many cellular settings, triggering of autophagy relies on the inhibition of mammalian target of rapamycin complex 1 (mTORC1), an event that promotes the activation (de-inhibition) of several autophagy proteins (Atgs) involved in the initial phase of membrane isolation (1). Enlargement of this complex to form the autophagosome requires the participation of 2 ubiquitin-like conjugation systems. One involves the conjugation of ATG12 to ATG5 and the other of phosphatidylethanolamine to LC3/ATG8 (1). The final outcome of the activation of the autophagy program is highly dependent on the cellular context and the strength and duration of the stress-inducing signals (2-5). Thus, besides its role in cellular homeostasis, autophagy can be a form of programmed cell death, designated "type II programmed cell death," or play a cytoprotective role, for example in situations
Cannabinoids - the active components of Cannabis sativa and their derivatives - exert palliative effects in cancer patients by preventing nausea, vomiting and pain and by stimulating appetite. In addition, these compounds have been shown to inhibit the growth of tumour cells in culture and animal models by modulating key cell-signalling pathways. Cannabinoids are usually well tolerated, and do not produce the generalized toxic effects of conventional chemotherapies. So, could cannabinoids be used to develop new anticancer therapies?
Delta9-Tetrahydrocannabinol, the main active component of marijuana, induces apoptosis of transformed neural cells in culture. Here, we show that intratumoral administration of Delta9-tetrahydrocannabinol and the synthetic cannabinoid agonist WIN-55,212-2 induced a considerable regression of malignant gliomas in Wistar rats and in mice deficient in recombination activating gene 2. Cannabinoid treatment did not produce any substantial neurotoxic effect in the conditions used. Experiments with two subclones of C6 glioma cells in culture showed that cannabinoids signal apoptosis by a pathway involving cannabinoid receptors, sustained ceramide accumulation and Raf1/extracellular signal-regulated kinase activation. These results may provide the basis for a new therapeutic approach for the treatment of malignant gliomas.
Leptin, a circulating hormone secreted mainly from adipose tissues, is involved in the control of body weight. The plasma concentrations are correlated with body mass index, and are reported to be high in patients with insulin resistance, which is one of the major risk factors for cardiovascular disease. However, the direct effect of leptin on vascular wall cells is not fully understood. In this study, we investigated the effects of leptin on reactive oxygen species (ROS) generation and expression of monocyte chemoattractant protein-1 (MCP-1) in bovine aortic endothelial cells (BAEC). We found that leptin increases ROS generation in BAEC in a dose-dependent manner and that its effects are additive with those of glucose. Rotenone, thenoyltrifluoroacetone (TTFA), carbonyl cyanide m-chlorophenylhydrazone (CCCP), Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), uncoupling protein-1 (UCP1) HVJ-liposomes, or manganese superoxide dismutase (MnSOD) HVJ-liposomes completely prevented the effect of leptin, suggesting that ROS arise from mitochondrial electron transport. Leptin increased fatty acid oxidation by stimulating the activity of carnitine palmitoyltransferase-1 (CPT-1) and inhibiting that of acetyl-CoA carboxylase (ACC), pace-setting enzymes for fatty acid oxidation and synthesis, respectively. Leptininduced ROS generation, CPT-1 activation, ACC inhibition, and MCP-1 overproduction were found to be completely prevented by either genistein, a tyrosine kinase inhibitor, H-89, a protein kinase A (PKA) inhibitor, or tetradecylglycidate, a CPT-1 inhibitor. Leptin activated PKA, and the effects of leptin were inhibited by the cAMP antagonist Rp-cAMPS. These results suggest that leptin induces ROS generation by increasing fatty acid oxidation via PKA activation, which may play an important role in the progression of atherosclerosis in insulinresistant obese diabetic patients.Leptin, a circulating hormone secreted mainly by adipose tissues, is involved in the control of body weight through the effects on food intake and energy expenditure (1, 2). In humans, the plasma concentrations of leptin are markedly correlated with body mass index and are also reported to be higher in insulin-resistant first-degree relatives of patients with non-insulin-dependent diabetes mellitus (NIDDM) 1 and type I diabetes compared with normal individuals (3-5). Disorders associated with hyperleptinemia such as obesity and insulin resistance are major risk factors for cardiovascular diseases (6, 7). Recently, the leptin receptor has been identified on endothelial cells, and leptin has been shown to promote both angiogenesis and inflammation (8, 9). However, the mechanism by which leptin induces inflammation remains to be elucidated.Adipocytes have recently been shown to secrete pro-inflammatory cytokines such as tumor necrosis factor-␣ and interleukin-6 (10, 11), and plasminogen activator inhibitor-1, a serine protease inhibitor of fibrinolysis, which together may play an active role in the pathogenesis of accelerated atherosclerosis in dia...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.