Highlights d Three groups of highly genetically-related disorders among 8 psychiatric disorders d Identified 109 pleiotropic loci affecting more than one disorder d Pleiotropic genes show heightened expression beginning in 2 nd prenatal trimester d Pleiotropic genes play prominent roles in neurodevelopmental processes Authors Cross-Disorder Group of the Psychiatric Genomics Consortium
Disorders of the brain can exhibit considerable epidemiological comorbidity and often share symptoms, provoking debate about their etiologic overlap. We quantified the genetic sharing of 25 brain disorders from genome-wide association studies of 265,218 patients and 784,643 control participants and assessed their relationship to 17 phenotypes from 1,191,588 individuals. Psychiatric disorders share common variant risk, whereas neurological disorders appear more distinct from one another and from the psychiatric disorders. We also identified significant sharing between disorders and a number of brain phenotypes, including cognitive measures. Further, we conducted simulations to explore how statistical power, diagnostic misclassification, and phenotypic heterogeneity affect genetic correlations. These results highlight the importance of common genetic variation as a risk factor for brain disorders and the value of heritability-based methods in understanding their etiology.
Attention-Deficit/Hyperactivity Disorder (ADHD) has a very high heritability (0.8), suggesting that about 80% of phenotypic variance is due to genetic factors. We used the integration of statistical and functional approaches to discover a novel gene that contributes to ADHD. For our statistical approach, we started with a linkage study based on large multigenerational families in a population isolate, followed by fine mapping of targeted regions using a familybased design. Family-and population-based association studies in five samples from disparate regions of the world were used for replication. Brain imaging studies were performed to evaluate gene function. The linkage study discovered a genome region harbored in the Latrophilin 3 gene (LPHN3). In the world-wide samples (total n = 6360, with 2627 ADHD cases and 2531 controls) statistical association of LPHN3 and ADHD was confirmed. Functional studies revealed that LPHN3 variants are expressed in key brain regions related to attention and activity, affect metabolism in neural circuits implicated in ADHD, and are associated with response to stimulant medication. Linkage and replicated association of ADHD with a novel non-candidate gene (LPHN3) provide new insights into the genetics, neurobiology, and treatment of ADHD.
Support is provided for the notion of contrast effects as a form of rater bias in maternal hyperactivity ratings. Different bias in teacher reports highlight that no one report can be considered a gold standard. The extent to which such biases may distort information for other data sources such as sib-pair studies of concordance/discordance is discussed.
The genetic basis of autism spectrum disorder (ASD) is known to consist of contributions from de novo mutations in variant-intolerant genes. We hypothesize that rare inherited structural variants in cis-regulatory elements (CRE-SVs) of these genes also contribute to ASD. We investigated this by assessing the evidence for natural selection and transmission distortion of CRE-SVs in whole genomes of 9274 subjects from 2600 families affected by ASD. In a discovery cohort of 829 families, structural variants were depleted within promoters and untranslated regions, and paternally inherited CRE-SVs were preferentially transmitted to affected offspring and not to their unaffected siblings. The association of paternal CRE-SVs was replicated in an independent sample of 1771 families. Our results suggest that rare inherited noncoding variants predispose children to ASD, with differing contributions from each parent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.