Glial cells are responsible for maintaining brain homeostasis. Modification of the viability and functions of glial cells, including astrocytes and microglia, are associated with neuronal death and neurological diseases. Many toxins (heavy metals, pesticides, bacterial or viral toxins) are known to impact on brain cell viability and functions. Although recent publications suggest a potential link between environmental exposure of humans to mycotoxins and neurological diseases, data regarding the effects of fungal toxins on brain cells are scarce. In the present study, we looked at the impact of deoxynivalenol (DON), a fungal ribotoxin, on glial cells from animal and human origin. We found that DON decreased the viability of glial cells with a higher toxicity against microglial cells compared with astrocytes. In addition to cellular toxicity, DON affected key functions of glial cells. Thus, DON caused a biphasic effect on the neuroinflammatory response of microglia to lipopolysaccharide (LPS), while sublethal doses of DON increased the LPS-induced secretion of TNF-α and nitric oxide, toxic doses inhibited it. In addition to affecting microglial functions, sublethal doses of DON also suppressed the uptake of L-glutamate by astrocytes. This inhibition was associated with a modification of the expression of the glutamate transporters at the plasma membrane. Our results suggest that environmental ribotoxins such as DON could, at low doses, cause modifications of brain homeostasis and possibly participate in the etiology of neurological diseases in which alterations of the glia are involved.
Recent evidence suggests that phospholipase D (PLD) can be regulated through its association/dissociation to lipid rafts. We show here that modifying lipid rafts either by cholesterol depletion using methyl-β-cyclodextrin and filipin or by conversion of sphingomyelin to ceramide with exogenous bacterial sphingomyelinase (bSMase) markedly activated the PLD of human PBMC. bSMase was the most potent PLD activator, giving maximal 6- to 7-fold increase in PLD activity. Triton X-100-treated lysates prepared from control PBMC and from bSMase-treated cells were fractionated by centrifugation on sucrose density gradient. We observed that bSMase treatment of the cells induced a larger ceramide increase in raft than in nonraft membranes and displaced both the Src kinase Lck and PLD1 out of the raft fractions. In addition, the three raft-modifying agents markedly inhibited the lymphoproliferative response to mitogenic lectin. To examine further the potential role of PLD activation in the control of lymphocyte responses, we transiently overexpressed either of the PLD1 and PLD2 isoforms in Jurkat cells and analyzed the phorbol ester plus ionomycin-induced expression of IL-2 mRNA, which is one of the early responses of lymphocyte to activation. We observed a 43% decrease of IL-2 mRNA level in Jurkat cells overexpressing PLD1 as compared with mock- or PLD2-transfected cells, which indicates that elevated PLD1, but not PLD2, activity impairs lymphocyte activation. Altogether, the present results support the hypothesis that PLD1 is activated by exclusion from lipid rafts and that this activation conveys antiproliferative signals in lymphoid cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.