Background: Oral cancer requires early diagnosis and treatment to increase the chances of survival. This study aimed to develop an artificial neural network model that helps to predict the individuals' risk of developing oral cancer based on data on risk factors, systematic medical condition, and clinic-pathological features.Methods: A popular data mining algorithm artificial neural network was used for developing the artificial intelligence-based prediction model. A total of 29 variables that were associated with the patients were used for developing the model. The dataset was randomly split into the training dataset 54 (75%) cases and testing dataset 19 (25%) cases. All records and observations were reviewed by Board-certified oral pathologist.Results: A total of 73 patients met the eligibility criteria. Twenty-two (30.13%) were benign cases, and 51 (69.86%) were malignant cases. Thirty-seven were female, and 36 were male, with a mean age of 63.09 years. Our analysis displayed that the average sensitivity and specificity of ANN for oral cancer prediction based on the 10-fold cross-validation analysis was 85.71% (95% confidence interval [CI], 57.19-98.22) and 60.00% (95% CI, 14.66-94.73), respectively. The accuracy of ANN for oral cancer prediction was 78.95% (95% CI, 54.43-931.95).
Conclusion:Our results suggest that this machine-learning technique has the potential to help in oral cancer screening and diagnosis based on the datasets. The results demonstrate that the artificial neural network could perform well in estimating the probability of malignancy and improve the positive predictive value that could help to predict the individuals' risk of developing OC based on knowledge of their risk factors, systemic medical conditions, and clinic-pathological data.
K E Y W O R D Sartificial neural network, early detection, machine learning, oral cancer, prediction model
| INTRODUC TI ONOral cancer (OC) is the 11th most common cancer in the world, the estimated number of new cases of OC is around 657 000, which accounts for more than 330 000 deaths each year. 1 In Saudi Arabia, OC is the third most common malignancy, with lymphoma and leukemia at the first and second positions. 2 Oral squamous cell carcinoma is the most common type of OC. 3 The prevalence of oral cancer How to cite this article: Alhazmi A, Alhazmi Y, Makrami A, et al. Application of artificial intelligence and machine learning for prediction of oral cancer risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.