Occlusive vascular disease is a widespread abnormality leading to lethal or debilitating outcomes such as myocardial infarction and stroke. It is part of atherosclerosis and is evoked by clinical procedures including angioplasty and grafting of saphenous vein in bypass surgery. A causative factor is the switch in smooth muscle cells to an invasive and proliferative mode, leading to neointimal hyperplasia. Here we reveal the importance to this process of TRPC1, a homolog of Drosophila transient receptor potential. Using 2 different in vivo models of vascular injury in rodents we show hyperplasic smooth muscle cells have upregulated TRPC1 associated with enhanced calcium entry and cell cycle activity. Neointimal smooth muscle cells after balloon angioplasty of pig coronary artery also express TRPC1. Furthermore, human vein samples obtained during coronary artery bypass graft surgery commonly exhibit an intimal structure containing smooth muscle cells that expressed more TRPC1 than the medial layer cells. Veins were organ cultured to allow growth of neointimal smooth muscle cells over a 2-week period. To explore the functional relevance of TRPC1, we used a specific E3-targeted antibody to TRPC1 and chemical blocker 2-aminoethoxydiphenyl borate. Both agents significantly reduced neointimal growth in human vein, as well as calcium entry and proliferation of smooth muscle cells in culture. The data suggest upregulated TRPC1 is a general feature of smooth muscle cells in occlusive vascular disease and that TRPC1 inhibitors have potential as protective agents against human vascular failure.
Myofibroblasts (MFs) are contractile cells deriving from a multiplicity of resident cells and/or circulating progenitors that are known to play a key role in wound healing. They were first discovered and analysed in the early 1970s in granulation tissue. Since their first identification, the role of MF and their mechanisms of differentiation have been highlighted in a number of diseases, including organ fibrosis and tumours, with particular attention devoted to the liver, kidney, and pulmonary fibrosis. The aim of this review is to summarize the current evidence for the role played by MFs in two frequent vascular diseases related to the remodelling of the vascular wall: the different forms of arterial restenosis and the most common forms of thoracic aortic aneurysm. The in-depth knowledge of the molecular pathways involved in MF differentiation, contraction, and survival/apoptosis could contribute to the identification of novel therapeutic strategies for anti-fibrotic and anti-remodelling therapy of vascular diseases in which these cells are involved.
Endometriosis is a chronic disease characterized by the presence of ectopic endometrial tissue outside of the uterus with mixed traits of benign and malignant pathology. In this study we analyzed in endometrial and endometriotic tissues the differential expression of a panel of genes that are involved in preservation of stemness status and consequently considered as markers of stem cell presence. The expression profiles of a panel of 13 genes (SOX2, SOX15, ERAS, SALL4, OCT4, NANOG, UTF1, DPPA2, BMI1, GDF3, ZFP42, KLF4, TCL1) were analyzed by reverse transcription-polymerase chain reaction in human endometriotic (n = 12) and endometrial samples (n = 14). The expression of SALL4 and OCT4 was further analyzed by immunohistochemical methods. Genes UTF1, TCL1, and ZFP42 showed a trend for higher frequency of expression in endometriosis than in endometrium (P < 0.05 for UTF1), whereas GDF3 showed a higher frequency of expression in endometrial samples. Immunohistochemical analysis revealed that SALL4 was expressed in endometriotic samples but not in endometrium samples, despite the expression of the corresponding mRNA in both the sample groups. This study highlights a differential expression of stemness-related genes in ectopic and eutopic endometrium and suggests a possible role of SALL4-positive cells in the pathogenesis of endometriosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.