Breast cancer is the most common cancer among women, and even though treatments are available, efficiency varies with the patients. In vitro 2D models are commonly used to develop new treatments. However, 2D models overestimate drug efficiency, which increases the failure rate in later phase III clinical trials. New model systems that allow extensive and efficient drug screening are thus required. Three-dimensional printed hydrogels containing active components for cancer cell growth are interesting candidates for the preparation of next generation cancer cell models. Macromolecules, obtained from marine- and land-based resources, can form biopolymers (polysaccharides such as alginate, chitosan, hyaluronic acid, and cellulose) and bioactive components (structural proteins such as collagen, gelatin, and silk fibroin) in hydrogels with adequate physical properties in terms of porosity, rheology, and mechanical strength. Hence, in this study attention is given to biofabrication methods and to the modification with biological macromolecules to become bioactive and, thus, optimize 3D printed structures that better mimic the cancer cell microenvironment. Ink formulations combining polysaccharides for tuning the mechanical properties and bioactive polymers for controlling cell adhesion is key to optimizing the growth of the cancer cells.
Cellulose-based materials represent a renewable, biodegradable, and environmentally friendly alternative to plastic from fossil resources. Nanopaper is a strong and lightweight material formed from cellulose nanofibrils (CNFs). Paper and nanopaper have been considered as excellent alternatives to plastics for use in agriculture and for packaging applications. However, common for both paper and nanopaper is their hydrophilic character, and consequently, poor water-resistance properties. ORMOCER®s are a class of inorganic–organic polymers with excellent barrier and protective properties used for a range of coating applications. Here we present ORMOCER®-coated paper and nanopaper. The coated papers and nanopapers are characterized, both in terms of their morphology, hydrophobicity, and mechanical properties. We demonstrate that the pressure used during the pressing and drying of paper and nanopaper influence their tear and tensile—properties, and that the morphology of the coated nanopaper differs significantly from that of the coated paper. While the ORMOCER® was impregnated within the porous network of the paper, a well-defined two-layered morphology was obtained with the coated nanopaper. Further, the biodegradability of the nanopaper with and without coating was assessed. The degradation study demonstrated that both the pressure used during the pressing and drying of the nanopaper, and the composition of the ORMOCER®, influenced the rate of degradation. Taken together, ORMOCER®-coated paper and nanopaper are promising for the preparation of materials that are both water-resistant, renewable, and biodegradable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.