The introduction of novel bioactive materials to manipulate living cell behavior is a crucial topic for biomedical research and tissue engineering. Biomaterials or surface patterns that boost specific cell functions can enable innovative new products in cell culture and diagnostics. This study investigates the influence of the intrinsically nano‐patterned surface of nanoporous glass membranes on the behavior of mammalian cells. Three different cell lines and primary human mesenchymal stem cells (hMSCs) proliferate readily on nanoporous glass membranes with mean pore sizes between 10 and 124 nm. In both proliferation and mRNA expression experiments, L929 fibroblasts show a distinct trend toward mean pore sizes >80 nm. For primary hMSCs, excellent proliferation is observed on all nanoporous surfaces. hMSCs on samples with 17 nm pore size display increased expression of COL10, COL2A1, and SOX9, especially during the first two weeks of culture. In the upside down culture, SK‐MEL‐28 cells on nanoporous glass resist the gravitational force and proliferate well in contrast to cells on flat references. The effect of paclitaxel treatment of MDA‐MB‐321 breast cancer cells is already visible after 48 h on nanoporous membranes and strongly pronounced in comparison to reference samples, underlining the material's potential for functional drug screening.
Biodegradable packaging materials are already in use. However, there are severe restrictions preventing the broad application in food packaging, especially due to insufficient barrier properties. Our idea was to improve these properties with a biodegradable coating. The Fraunhofer-Institut für Silicatforschung ISC has been developing high-barrier coatings for various packaging applications based on a class of materials with glass-like structural units, named ORMOCER®. However, these state-of-the-art ORMOCER® coatings are not biodegradable. The aim of our work was to modify ORMOCER® to become biodegradable and, at the same time, preserve the barrier and functional properties. This was achieved by the incorporation of functionalized tamarind hemicellulose Glyate® into the ORMOCER® matrix. For this purpose a two-step amination reaction of Glyate® was chosen. The aminated product was analyzed by FTIR, solid-state NMR and elemental analysis. New aminated Glyate® containing bioORMOCER® lacquers could be synthesized. Lacquer quality assessment was performed by Raman spectroscopy. The properties of the resulting coatings were evaluated by laser scanning microscopy (LSM), oxygen transmission rates (OTR) measurements, E-Module determination and adhesion tests. Standardized tests for compostability, overall migration and antimicrobial properties were performed for the bioORMOCER® coatings. The evaluation showed that the new bioORMOCER® coatings are suitable for sustainable food packaging.
Cellulose-based materials represent a renewable, biodegradable, and environmentally friendly alternative to plastic from fossil resources. Nanopaper is a strong and lightweight material formed from cellulose nanofibrils (CNFs). Paper and nanopaper have been considered as excellent alternatives to plastics for use in agriculture and for packaging applications. However, common for both paper and nanopaper is their hydrophilic character, and consequently, poor water-resistance properties. ORMOCER®s are a class of inorganic–organic polymers with excellent barrier and protective properties used for a range of coating applications. Here we present ORMOCER®-coated paper and nanopaper. The coated papers and nanopapers are characterized, both in terms of their morphology, hydrophobicity, and mechanical properties. We demonstrate that the pressure used during the pressing and drying of paper and nanopaper influence their tear and tensile—properties, and that the morphology of the coated nanopaper differs significantly from that of the coated paper. While the ORMOCER® was impregnated within the porous network of the paper, a well-defined two-layered morphology was obtained with the coated nanopaper. Further, the biodegradability of the nanopaper with and without coating was assessed. The degradation study demonstrated that both the pressure used during the pressing and drying of the nanopaper, and the composition of the ORMOCER®, influenced the rate of degradation. Taken together, ORMOCER®-coated paper and nanopaper are promising for the preparation of materials that are both water-resistant, renewable, and biodegradable.
Oxygen scavengers are used to reduce the oxygen permeation of packaging (active barrier) and to absorb oxygen from its direct environment, e.g., a headspace of packaged food. Few oxygen scavenger coatings have been developed. Therefore, in this study, a novel oxygen scavenger coating has been developed. It is based on inorganic–organic polymers (ORMOCER®). The oxygen absorption reaction is activated by UV light. The scavenger was synthesized, coated on aluminum foil, subsequently dried and afterwards laminated with a polyethylene sealing layer. UV light activates the oxygen scavenging reaction. The oxygen absorption capacity, measured at 23 °C and 0% r.h., was 242 ± 8 mg oxygen/g scavenger coating. When the oxygen scavenger coating layer was laminated by using a two-component polyurethane laminating adhesive, the absorption capacity was hardly reduced, with a measured absorption capacity of 223 ± 18 mg oxygen/g scavenger coating. In an experimental packaging sample with the oxygen scavenger coating with a thickness (dry) of 3 µm and 18 µm, near-zero mbar oxygen partial pressure was reached by the non-laminated oxygen scavenger coatings within two days, and within about 20 days when laminated with a polyurethane laminating adhesive and a PE-layer on the oxygen scavenger layer. The oxygen partial pressure was kept near zero mbar for 500 days, whereas in the experimental packaging without oxygen scavenger, the oxygen partial pressure increased to 110 mbar during this time. The developed oxygen scavenger based on inorganic–organic polymers can be applied as wet chemical coating on various surfaces with standard application procedures. Application scenarios are oxygen-sensitive goods such as food, pharmaceutical products and cosmetics.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.