Dibandingkan dengan orang dewasa, bayi dan balita jauh lebih rentan terhadap penyakit. Kondisi geografis Indonesia yang berada di daerah tropis menjadikan variasi mikroorganisme penyebab penyakit lebih beragam. Diperlukan pengetahuan penyakit-penyakit yang biasa menyerang sang anak agar orang tua dapat bertindak secara cepat dan tepat dalam mencegah dan menanggulangi kondisi tersebut. Maka dari itu perlu adanya sebuah sistem yang membantu para orang tua untuk mendeteksi secara dini penyakit dari anak. Salah satu cabang ilmu komputer yang dapat membantu orang tua dalam menangani deteksi penyakit pada anak adalah sistem pakar. Pada penelitian ini, pembuatan sistem pakar diagnosa penyakit pada anak menggunakan metode certainty factor. Aplikasi diagnosa penyakit anak dapat melakukan diagnosa terhadap pasien berdasarkan gejala-gejala yang di alami sehingga dapat diperoleh sebuah kemungkinan penyakit yang didertita pasien. Adapun tingkat akurasi sistem yang telah dilakukan oleh 23 pasien terdapat 22 kasus yang sesuai dan 1 kasus yang tidak sesuai. Jadi tingkat akurasi sistem setelah dilakukan pengujian terhadap 23 pasien adalah 96%.
Classification is data mining techniques which used for the purposes of diagnosis in the medical field as measured by the high accuracy produced. The accuracy of classification algorithm is influenced by the use of features and dimensions in dataset. In this study, Chronic Kidney Disease (CKD) dataset was used where the data is one of the high dimension datasets. Support Vector Machine (SVM) algorithm is used because its ability to handle high-dimensional data. In the dataset, it consists of 24 attributes and 1 class which if all are used results accuracy of classification will be diminished. Method for selecting features with Particle Swarm Optimization (PSO) is applied to reduce redundant features and produce optimal features. In addition, ensemble AdaBoost also applied in this research to increase performance of entirety classification algorithm. The results showed that the optimization of SVM algorithm by using PSO as a selection and ensemble feature of AdaBoost with an average of selected features of 18 features could increase the accuracy of 36.20% to 99.50% in the diagnosis of CKD compared to the SVM algorithm without optimization only resulting in accuracy 63.30%. This research can be used as a reference for further research in focusing on the preprocessing stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.