2019
DOI: 10.24843/lkjiti.2019.v10.i02.p06
|View full text |Cite
|
Sign up to set email alerts
|

SVM Optimization Based on PSO and AdaBoost to Increasing Accuracy of CKD Diagnosis

Abstract: Classification is data mining techniques which used for the purposes of diagnosis in the medical field as measured by the high accuracy produced. The accuracy of classification algorithm is influenced by the use of features and dimensions in dataset. In this study, Chronic Kidney Disease (CKD) dataset was used where the data is one of the high dimension datasets. Support Vector Machine (SVM) algorithm is used because its ability to handle high-dimensional data. In the dataset, it consists of 24 attributes and … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
4

Year Published

2019
2019
2023
2023

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 13 publications
(8 citation statements)
references
References 13 publications
0
4
0
4
Order By: Relevance
“…In addition, Amanah et al has implied PSO algorithms to optimize their result more precisely and has obtained an accuracy of 99.5%. After applying AdaBoost and PSO feature selection algorithm combined, they were able to increase their average accuracy by 36.20% [36]. On the other hand, Chittora et.…”
Section: Related Workmentioning
confidence: 99%
“…In addition, Amanah et al has implied PSO algorithms to optimize their result more precisely and has obtained an accuracy of 99.5%. After applying AdaBoost and PSO feature selection algorithm combined, they were able to increase their average accuracy by 36.20% [36]. On the other hand, Chittora et.…”
Section: Related Workmentioning
confidence: 99%
“…By using statistics and learning with expected [19]. SVM uses kernel assistance to connect training data input to wider space dimension features and identifies its hyperplane as a dividing space [20].…”
Section: Support Vector Machine (Svm)mentioning
confidence: 99%
“…Dengan P adalah pivot point, H1 adalah harga high kemarin, L1 adalah harga low kemarin, R1 adalah batas Resistance 1 periode sebelumnya dan R2 adalah batas Resistance 2 periode sebelumnya. Rumus dalam menentukan batas support menggunakan persamaan (4) dan (5).…”
Section: Kajian Pustaka 31unclassified
“…Penelitian terkait yang memprakarsai penelitian ini dirancang dan dibuat sebagaimana mestinya [2][3][4] [5] yang dimana meskipun konteks yang diteliti berbeda dari penelitian ini, penelitian terkait memiliki tujuan utama yang sama dengan penelitian ini, yaitu melakukan optimalisasi suatu sistem dengan menggunakan metode/algoritma yang sudah dirancang agar kinerja maupun alur dari sistem tersebut lebih efisien dari sebelumnya.…”
unclassified