The development of sensors applied to failure detection systems for power transformers is a critical concern since this device stands out as a strategic component of the electric power system. Among the most common issues is the presence of partial discharges (PDs) in the insulation system of the transformer, which can lead the device to total failure. Aiming to prevent unexpected damages, several PD monitoring approaches have been developed. One of the most promising is the Acoustic Emission (AE) technique, which captures the acoustic signals generated by PDs using piezoelectric sensors. Although many studies have proved the effectiveness of AE, most signal processing approaches are strictly related to the frequency analysis of PD signals, which can hide important information such as the repetition rate of the failure. This article presents a comparison between two types of piezoelectric transducers: the microfiber composite (MFC) and the lead zirconate titanate (PZT). To ensure the detection of multiple PDs, time–frequency analysis was carried out by short-time Fourier transform (STFT). Intending to compare the sensibility of the transducers, the AE signals were windowed, and the root mean square (RMS) value was extracted for each part of the signal. The results indicate that spectrogram and RMS analysis have great potential to detect multiple PD activity. Although MFC was two times more sensitive to PD detection than the PZT sensor, PZT presents a higher frequency response band (0–100 kHz) than MFC (80 kHz).
Under normal operation, insulation systems of high voltage electrical devices, like power transformers, are constantly subjected to multiple types of stresses (electrical, thermal, mechanical, environmental, etc.), which can lead to a degradation of the machine insulation. One of the main indicators of the dielectric degradation process is the presence of partial discharges (PD). Although it starts due to operational stresses, PD can cause a progressive insulation deterioration, since it is characterized by localized current pulses that emit heat, UV radiation, acoustic, and electromagnetic waves. In this sense, acoustic emission (AE) transducers are wildly applied in PD detection. The goal is to reduce maintenance costs by predictive actions and avoid total failures. Becasue of the progressive deterioration, the assessment of the PD evolution is crucial for improving the maintenance planning and ensure the operation of the transformer. Based on this issue, this article presents a new wavelet -based analysis in order to characterize the PD evolution. Three levels of failures were carried out in a transformer and the acoustic signals captured by a lead zirconate titanate piezoelectric transducer were processed by discrete wavelet transform. The experimental results revealed that the energy of the approximation levels increasing with the failure evolution. More specifically, levels 4, 6, 7, and 10 presented a linear fit to characterize the phenomena, enhancing the applicability of the proposed approach to transformer monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.