Unusual structure of low-density carbon nanofoam, different from the commonly observed micropearl morphology, was obtained by hydrothermal carbonization (HTC) of a sucrose solution where a specific small amount of naphthalene had been added. Helium-ion microscopy (HIM) was used to obtain images of the foam yielding micron-sized, but non-spherical particles as structural units with a smooth foam surface. Raman spectroscopy shows a predominant sp 2 peak, which results from the graphitic internal structure. A strong sp 3 peak is seen in X-ray photoelectron spectroscopy (XPS). Electrons in XPS are emitted from the near surface region which implies that the graphitic microparticles have a diamond-like foam surface layer. The occurrence of separated sp 2 and sp 3 regions is uncommon for carbon nanofoams and reveals an interesting bulk-surface structure of the compositional units.
Highly uniform samples of carbon nanofoam from hydrothermal sucrose carbonization were studied by helium ion microscopy (HIM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Foams with different densities were produced by changing the process temperature in the autoclave reactor. This work illustrates how the geometrical structure, electron core levels, and the vibrational signatures change when the density of the foams is varied. We find that the low-density foams have very uniform structure consisting of micropearls with ≈2–3 μm average diameter. Higher density foams contain larger-sized micropearls (≈6–9 μm diameter) which often coalesced to form nonspherical μm-sized units. Both, low- and high-density foams are comprised of predominantly sp2-type carbon. The higher density foams, however, show an advanced graphitization degree and a stronger sp3-type electronic contribution, related to the inclusion of sp3 connections in their surface network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.