Larger clinical trials of longer duration are necessary to better understand the relationships between RA insulin, ApoE4 carrier status and cognitive performance in AD.
osteoderms are bones embedded within the dermis, and are common to select members of most major tetrapod lineages. The largest known animals that bear osteoderms are members of Titanosauria, a diverse clade of sauropod dinosaurs. Here we report on two titanosaur osteoderms recovered from the upper Cretaceous maevarano Formation of madagascar. Each osteoderm was discovered in association with a partial skeleton representing a distinct ontogenetic stage of the titanosaur Rapetosaurus krausei. Combined, these specimens provide novel insights into the arrangement and function of titanosaur osteoderms. Taphonomic data confirm that Rapetosaurus developed only limited numbers of osteoderms in its integument. The adult-sized osteoderm is the most massive integumentary skeletal element yet discovered, with an estimated volume of 9.63 litres. uniquely, this specimen possesses an internal cavity equivalent to more than half its total volume. Large, hollow osteoderms may have functioned as mineral stores in fecund, rapidly growing titanosaurs inhabiting stressed environments.
Background: Relatively few patients have dual-energy x-ray absorptiometry to quantify the magnitude of bone loss as they age. Recent work correlates mean computed tomography (CT) attenuation in the level I (L1) vertebra with bone mineral density (BMD), making it possible to objectively evaluate the magnitude of bone loss in osteoporosis by this method. The aims of this study were to evaluate the utility of using CT scans in patients with acute thoracic and lumbar spine fractures to diagnose osteoporosis and using CT attenuation to evaluate the association between age and BMD. Methods: We performed a retrospective study of patients with acute fractures of the thoracic or lumbar spine who had also undergone an abdominal (or L1) CT scan and compared mean CT attenuation in L1 against threshold values. We also compared differences in CT attenuation between younger (<65 years) and older (!65 years) and older patients. Results: A total of 124 patients were evaluated (74 thoracic and 50 lumbar fractures). Overall, there was a strong correlation between age and bone density as measured by CT attenuation (r ¼ À.76). Among those with thoracic fractures (<65 years), mean CT attenuation was 196.51 HU. Forty-one patients were !65 years and had mean CT attenuation of 105.90 HU (P < .001). In patients with lumbar fractures, 27 patients were <65 years and had a mean CT attenuation of 192.26 HU and 23 patients were !65 years and had mean CT attenuation of 114.31 HU (P < .001). At the threshold of 110 HU, set for specificity, the magnitude of difference between the age-stratified cohorts was greater in the thoracic spine (P < .0001 vs P ¼ .003). Discussion: Using opportunistic CT, we demonstrate the relative frequency of osteoporosis in patients with acute fractures of the thoracic and lumbar spine and confirm that the association increases with age. The CT attenuation may provide a cheap and convenient method to help confirm a clinical diagnosis of osteoporosis in patients with fractures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.