Diverse evidence suggests that the gut microbiota is involved in the development of obesity and associated comorbidities. It has been reported that the composition of the gut microbiota differs in obese and lean subjects, suggesting that microbiota dysbiosis can contribute to changes in body weight. However, the mechanisms by which the gut microbiota participates in energy homeostasis are unclear. Gut microbiota can be modulated positively or negatively by different lifestyle and dietary factors. Interestingly, complex interactions between genetic background, gut microbiota, and diet have also been reported concerning the risk of developing obesity and metabolic syndrome features. Moreover, microbial metabolites can induce epigenetic modifications (i.e., changes in DNA methylation and micro-RNA expression), with potential implications for health status and susceptibility to obesity. Also, microbial products, such as short-chain fatty acids or membrane proteins, may affect host metabolism by regulating appetite, lipogenesis, gluconeogenesis, inflammation, and other functions. Metabolomic approaches are being used to identify new postbiotics with biological activity in the host, allowing discovery of new targets and tools for incorporation into personalized therapies. This review summarizes the current understanding of the relations between the human gut microbiota and the onset and development of obesity. These scientific insights are paving the way to understanding the complex relation between obesity and microbiota. Among novel approaches, prebiotics, probiotics, postbiotics, and fecal microbiome transplantation could be useful to restore gut dysbiosis.
Ultra-processed foods (UPFs) consumption could affect gut microbiota diversity and profile. We aimed to evaluate the effects of UPFs on microbiota, considering the role of sex. The consumption of UPFs (using NOVA criteria) was assessed with a validated 137-item food-frequency questionnaire. Participants (n = 359) were classified into less than three servings per day (n = 96) of UPFs and more than five (n = 90). Women and men were subclassified following the same criteria. 16S rRNA sequencing was performed from DNA fecal samples, and differences in microbiota were analyzed using EdgeR. The relationship between UPFs and bacteria was assessed by Spearman correlation and comparison of tertiles of consumption. Women who consumed more than five servings/day of UPFs presented an increase in Acidaminococcus, Butyrivibrio, Gemmiger, Shigella, Anaerofilum, Parabacteroides, Bifidobacterium, Enterobacteriales, Bifidobacteriales and Actinobacteria and a decrease in Melainabacter and Lachnospira. Bifidobacterium, Bifidobacteriales and Actinobacteria was positively associated with pizza and Actinobacteria with industrially processed dairy in women. Men who consumed more than five servings/day presented an increase of Granulicatella, Blautia, Carnobacteriaceae, Bacteroidaceae, Peptostreptococcaceae, Bacteroidia and Bacteroidetes and a decrease of Anaerostipes and Clostridiaceae. Bacteroidia and Bacteroidetes correlated positively with industrially processed meat. This study suggests that UPFs may affect microbiota composition differently in women and men.
The MD (Mediterranean diet) is recognized as one of the healthiest diets worldwide and is associated with the prevention of cardiovascular and metabolic diseases. Dietary habits are considered one of the strongest modulators of gut microbiota, which seem to play a significant role in health status of the host. The purpose of the present study was to evaluate interactive associations between gut microbiota composition and habitual dietary intake in 360 Spanish adults from the Obekit cohort (normal weight, overweight, and obese participants). Dietary intake and adherence to the MD tests were administered and fecal samples were collected from each participant. Fecal 16S rRNA (ribosomal Ribonucleic Acid) gene sequencing was performed and checked against the dietary habits. MetagenomeSeq was the statistical tool applied to analyze data at the species taxonomic level. Results from this study identified several beneficial bacteria that were more abundant in the individuals with higher adherence to the MD. Bifidobacterium animalis was the species with the strongest association with the MD. Some SCFA (Short Chain Fatty Acids) -producing bacteria were also associated with MD. In conclusion, this study showed that MD, fiber, legumes, vegetable, fruit, and nut intake are associated with an increase in butyrate-producing taxa such as Roseburia faecis, Ruminococcus bromii, and Oscillospira (Flavonifractor) plautii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.