Protecting civilian and military water supplies has received more attention since the United States began its war on terror in 2001. Both chlorine and bromine are used by branches of the U.S. military for disinfecting water supplies; however, limited data exists as to the effectiveness of these additives when used against viral biowarfare agents. The present study sought to evaluate the survival of selected viral biothreat agents in disinfected water. Disinfected water samples were spiked with vaccinia virus strain WR and Venezuelan equine encephalitis (VEE) virus strain TC-83 each separately to a final concentration of approximately 1 × 106 PFU/mL, and survival was assessed by plaque assay. Both viruses were inactivated by 1 mg/L free available chlorine (FAC) and 2mg/L total bromine within one hour. In conclusion, these results demonstrate that both chlorine and bromine are effective disinfectants against vaccinia virus and VEE strain TC-83 at the concentrations tested.
Variola major, the causative agent of smallpox, has been eradicated from nature. However, stocks still exist; thus, there is a need for relevant decontamination studies, preferably with nonpathogenic simulants. Previous studies have shown a similarity in response of vaccinia virus and variola major to various decontaminants and thermal inactivation. This study compared vaccinia and fowlpox viruses under similar conditions, using disinfectants and temperatures for which variola major data already existed. Most disinfectants showed similar efficacy against vaccinia and fowlpox, suggesting the utility of fowlpox as a decontamination simulant. Inactivation kinetics studies showed that fowlpox behaved similarly to variola major when treated with 0.1% iodine and 5.7% polyethyleneglycol nonylphenyl ether, 0.025% sodium hypochlorite, 0.05% sodium hypochlorite, and 0.1% cetyltrimethylammonium chloride and 0.05% benzalkonium chloride, but differed in its response to 0.05% iodine and 0.3% polyethyleneglycol nonylphenyl ether and 40% ethanol. Thermal inactivation studies demonstrated that fowlpox is a suitable thermal simulant for variola major between 40°C and 55°C.
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathenng and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense. Washington Headquarters Services. Directorate for Information Operations and Reports (0704-0188). 1215 Jefferson Davis Highway, Suite 1204, Artington. VA 22202-4302 Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection ol information if it does not display a currently valid OMB control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
This article has been peer reviewed through the journal's standard double blind peer-review, where both the reviewers and authors are anonymised during review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.