In the United States in 2016, 64,000 overdose deaths were reported to be associated with the abuse of opioids, including prescription painkillers (e.g. oxycodone), opiates (e.g. heroin), or synthetic opioids (e.g. fentanyl). The recent spike in the presence of synthetic opioids in lots of heroin distributed on the street present specific and significant challenges to law enforcement. Synthetic opioids are extremely toxic substances, which can easily be inhaled. This type of exposure can lead to accidental overdoses by law enforcement and other first responders answering calls involving illicit drugs containing these substances. Due to this extreme toxicity, it is important for these individuals to have tools that can be easily deployed for accurate presumptive field tests. Currently, there are only a limited number of presumptive tests available for fentanyl detection. In this study, we addressed this technology gap by evaluating newly developed lateral flow immunoassays (LFIs) designed for the detection of fentanyl and its derivatives. These LFIs were
A 2010 study exposed Staphylococcus aureus to ultraviolet (UV) radiation and thermal heating from pulsed xenon flash lamps. The results suggested that disinfection could be caused not only by photochemical changes from UV radiation, but also by photophysical stress damage caused by the disturbance from incoming pulses. The study called for more research in this area. The recent advances in light‐emitting diode (LED) technology include the development of LEDs that emit in narrow bands in the ultraviolet‐C (UV‐C) range (100–280 nm), which is highly effective for UV disinfection of organisms. Further, LEDs would use less power, and allow more flexibility than other sources of UV energy in that the user may select various pulse repetition frequencies (PRFs), pulse irradiances, pulse widths, duty cycles and types of waveform output (e.g. square waves, sine waves, triangular waves, etc.). Our study exposed Escherichia coli samples to square pulses of 272 nm radiation at various PRFs and duty cycles. A statistically significant correlation was found between E. coli’s disinfection sensitivity and these parameters. Although our sample size was small, these results show promise and are worthy of further investigation. Comparisons are also made with pulsed disinfection by LEDs emitting at 365 nm, and pulsed disinfection by xenon flash lamps.
Development of a rapid field test is needed capable of determining if field supplies of water are safe to drink by the warfighter during a military operation. The present study sought to assess the effectiveness of handheld assays (HHAs) in detecting ricin and Staphylococcal Enterotoxin B (SEB) in water. Performance of HHAs was evaluated in formulated tap water with and without chlorine, reverse osmosis water (RO) with chlorine, and RO with bromine. Each matrix was prepared, spiked with ricin or SEB at multiple concentrations, and then loaded onto HHAs. HHAs were allowed to develop and then read visually. Limits of detection (LOD) were determined for all HHAs in each water type. Both ricin and SEB were detected by HHAs in formulated tap water at or below the suggested health effect levels of 455 ng/mL and 4.55 ng/mL, respectively. However, in brominated or chlorinated waters, LODs for SEB increased to approximately 2,500 ng/mL. LODs for ricin increased in chlorinated water, but still remained below the suggested health effect level. In brominated water, the LOD for ricin increased to approximately 2,500 ng/mL. In conclusion, the HHAs tested were less effective at detecting ricin and SEB in disinfected water, as currently configured.
The opioid crisis has continued to progress in the United States and the rest of the world. As this crisis continues, there is a pressing need for a rapid and cost‐effective method for detecting fentanyl. Recent studies have suggested that lateral flow immunoassays (LFIs) could fill this technology gap. These qualitative paper‐based assays contain antibodies designed to react with fentanyl and provide positive or negative results within a matter of minutes. In this study, two different LFI configurations for the detection of fentanyl were examined (dipsticks and cassettes) for effectiveness of detection using seized drug samples and postmortem urine samples. In the current study, 44 seized drug samples (32 fentanyl‐positive, 12 fentanyl‐negative) and 14 postmortem urine samples (10 fentanyl‐positive, 4 fentanyl‐negative) were analyzed. All 32 fentanyl‐containing seized drug samples and 10 postmortem fentanyl‐positive urine samples displayed positive LFI results with both LFI configurations. The fentanyl dipsticks displayed a sensitivity of 100%, a specificity of 75%, and an efficiency of 93.2% for seized drug samples and a sensitivity, specificity, and efficiency of 100% for postmortem urine. Analysis of the fentanyl cassettes displayed a sensitivity, specificity, and efficiency of 100% for seized drug samples and a sensitivity of 100%, a specificity of 75%, and an efficiency of 92.9% for postmortem urine samples. These data point to the utility of LFIs as a quick and low resource‐dependent option for presumptive detection of fentanyl in real‐world situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.