Risk of obesity in adult life is subject to programming during gestation. To examine whether in utero exposure to maternal obesity increases the risk of obesity in offspring, we developed an overfeeding-based model of maternal obesity in rats utilizing intragastric feeding of diets via total enteral nutrition. Feeding liquid diets to adult female rats at 220 kcal/kg(3/4) per day (15% excess calories/day) compared with 187 kcal/kg(3/4) per day for 3 wk caused substantial increase in body weight gain, adiposity, serum insulin, leptin, and insulin resistance. Lean or obese female rats were mated with ad libitum AIN-93G-fed male rats. Exposure to obesity was ensured to be limited only to the maternal in utero environment by cross-fostering pups to lean dams having ad libitum access to AIN-93G diets throughout lactation. Numbers of pups, birth weight, and size were not affected by maternal obesity. Male offspring from each group were weaned at postnatal day (PND)21 to either AIN-93G diets or high-fat diets (45% fat calories). Body weights of offspring from obese dams did not differ from offspring of lean dams when fed AIN-93G diets through PND130. However, offspring from obese dams gained remarkably greater (P < 0.005) body weight and higher % body fat when fed a high-fat diet. Body composition was assessed by NMR, X-ray computerized tomography, and weights of adipose tissues. Adipose histomorphometry, insulin sensitivity, and food intake were also assessed in the offspring. Our data suggest that maternal obesity at conception leads to fetal programming of offspring, which could result in obesity in later life.
Gestational exposure to maternal overweight (OW) influences the risk of obesity in adult life. Male offspring from OW dams gain greater body weight and fat mass and develop insulin resistance when fed high-fat diets (45% fat). In this report, we identify molecular targets of maternal OW-induced programming at postnatal d 21 before challenge with the high-fat diet. We conducted global transcriptome profiling, gene/protein expression analyses, and characterization of downstream signaling of insulin and adiponectin pathways in conjunction with endocrine and biochemical characterization. Offspring born to OW dams displayed increased serum insulin, leptin, and resistin levels (P < 0.05) at postnatal d 21 preceding changes in body composition. A lipogenic transcriptome signature in the liver, before development of obesity, was evident in OW-dam offspring. A coordinated locus of 20 sterol regulatory element-binding protein-1-regulated target genes was induced by maternal OW. Increased nuclear levels of sterol regulatory element-binding protein-1 and recruitment to the fatty acid synthase promoter were confirmed via ELISA and chromatin immunoprecipitation analyses, respectively. Higher fatty acid synthase and acetyl coenzyme A carboxylase protein and pAKT (Thr(308)) and phospho-insulin receptor-beta were confirmed via immunoblotting. Maternal OW also attenuated AMP kinase/peroxisome proliferator-activated receptor-alpha signaling in the offspring liver, including transcriptional down-regulation of several peroxisome proliferator-activated receptor-alpha-regulated genes. Hepatic mRNA and circulating fibroblast growth factor-21 levels were significantly lower in OW-dam offspring. Furthermore, serum levels of high-molecular-weight adiponectin (P < 0.05) were decreased in OW-dam offspring. Phosphorylation of hepatic AMP-kinase (Thr(172)) was significantly decreased in OW-dam offspring, along with lower AdipoR1 mRNA. Our results strongly suggest that gestational exposure to maternal obesity programs multiple aspects of energy-balance regulation in the offspring.
Although obesity is often associated with high-fat diets, it can develop from a variety of meal patterns. Excessive intake of simple carbohydrates is one consistent eating behavior leading to obesity. However, the impact of overconsumption of diets with high carbohydrate to fat ratios (C/F) on body composition and global adipose tissue gene expression remains unclear. We used total enteral nutrition to evaluate the effects of caloric intake and C/F on body weight gain and development of obesity. Female Sprague Dawley rats were fed diets with either low C/F or high C/F (HC) (reflecting a 19.5-fold increase in C/F) at two levels of caloric intake: 187 or 220 kcal/kg(3/4) x d (15% excess) for 4 wk. At the end of the study period, rats fed HC diets had about 20% higher body weight at either caloric intake compared with rats fed low C/F diets (P < 0.05). Body composition (assessed by nuclear magnetic resonance, computerized tomography, and adipose tissue weights) revealed higher percent fat mass (P < 0.05) in HC rats. Obesity was associated with increased serum resistin, leptin, fasting hyperinsulinemia, and insulin resistance after an oral glucose challenge (P < 0.05). Microarray analyses of adipose tissues revealed HC diets led to changes in 270 and 464 transcripts at 187 and 220 kcal/kg(3/4) x d intakes. Genes regulating glucose transport, glycolysis, fatty acid and triglyceride biosynthesis, desaturation and elongation, adipogenesis, and adipokines were affected by HC diets. These results suggest that C/F and interactions with excessive caloric intake per se may regulate body composition and play important roles in the development of obesity and metabolic syndrome.
Henoch-Schönlein purpura (HSP) is typically seen as a self-limiting disease in children, but can present more severely in adults, especially when there is renal involvement. Management of HSP in adults also remains a controversial topic with very few studies evaluating available therapies. In this case, HSP presenting as a combination of severe gastrointestinal involvement and a rapid decline in renal function in an adult patient directed our therapy.The patient was a 48-year-old Caucasian male with no known past medical history, who presented with a combination of purpuric rash over the lower extremities, severe abdominal pain with upper gastrointestinal bleeding and a rapidly increasing serum creatinine, with hematuria. He initially underwent a skin biopsy, along with investigation for other possible causes, including autoimmune and infectious etiologies, which were negative. He was started on therapy for presumed HSP with intravenous methylprednisolone. The skin biopsy, however, was not conclusive, and the patient had no improvement in his clinical status. He then underwent a kidney biopsy that was consistent with HSP nephritis (immunoglobulin A (IgA) predominant glomerulonephritis with crescents), and esophagogastroduodenoscopy (EGD) that showed mucosal inflammation, ulcerations, and stigmata of bleeding—findings that were consistent with ischemia. Cyclophosphamide was added to the regimen at this time. However, he had worsening abdominal pain, continued gastrointestinal bleeding, now with hematochezia, and also worsening renal function that required dialysis. Plasmapheresis was then initiated on days alternating with dialysis. This resulted in the improvement of his gastrointestinal symptoms, but no recovery was seen of his renal function, and the patient required outpatient dialysis.This case report exhibits the unique presentation of severe gastrointestinal (GI) manifestations and rapid progression to renal failure in an adult patient with partial resolution of his severe manifestation after therapy was escalated as above. There was no established protocol that guided this therapy, which reflects the need for more studies on adult HSP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.