BackgroundThe discovery that heterozygous missense mutations in the gene encoding triggering receptor expressed on myeloid cells 2 (TREM2) are risk factors for Alzheimer’s disease (AD), with only the apolipoprotein E (APOE) ε4 gene allele conferring a higher risk, has led to increased interest in immune biology in the brain. TREM2 is expressed on microglia, the resident immune cells of the brain and has been linked to phagocytotic clearance of amyloid β (Aβ) plaques. Soluble TREM2 (sTREM2) has previously been measured in cerebrospinal fluid (CSF) by ELISA but in our hands commercial kits have proved unreliable, suggesting that other methods may be required. We developed a mass spectrometry method using selected reaction monitoring for the presence of a TREM2 peptide, which can be used to quantify levels of sTREM2 in CSF.FindingsWe examined CSF samples from memory clinics in Sweden and the UK. For all samples the following were available: clinical diagnosis, age, sex, and measurements of the CSF AD biomarkers Aβ42, T-tau and P-tau181. AD patients (n = 37) all met biomarker (IWG2) criteria for AD. Control individuals (n = 22) were cognitively normal without evidence for AD in CSF. We found significantly higher sTREM2 concentration in AD compared to control CSF. There were significant correlations between CSF sTREM2 and T-tau as well as P-tau181. CSF sTREM2 increase in AD was replicated in a second, independent cohort consisting of 24 AD patients and 16 healthy volunteers.ConclusionCSF concentrations of sTREM2 are higher in AD than in controls, and correlate with markers of neurodegeneration. CSF sTREM2 may be used to quantify glial activation in AD.Electronic supplementary materialThe online version of this article (doi:10.1186/s13024-016-0071-x) contains supplementary material, which is available to authorized users.
Huntington's disease (HD) is a genetic progressive neurodegenerative disorder, caused by a mutation in the gene, for which there is currently no cure. The identification of sensitive indicators of disease progression and therapeutic outcome could help the development of effective strategies for treating HD. We assessed mutant huntingtin (mHTT) and neurofilament light (NfL) protein concentrations in cerebrospinal fluid (CSF) and blood in parallel with clinical evaluation and magnetic resonance imaging in premanifest and manifest HD mutation carriers. Among HD mutation carriers, NfL concentrations in plasma and CSF correlated with all nonbiofluid measures more closely than did CSF mHTT concentration. Longitudinal analysis over 4 to 8 weeks showed that CSF mHTT, CSF NfL, and plasma NfL concentrations were highly stable within individuals. In our cohort, concentration of CSF mHTT accurately distinguished between controls and HD mutation carriers, whereas NfL concentration, in both CSF and plasma, was able to segregate premanifest from manifest HD. In silico modeling indicated that mHTT and NfL concentrations in biofluids might be among the earliest detectable alterations in HD, and sample size prediction suggested that low participant numbers would be needed to incorporate these measures into clinical trials. These findings provide evidence that biofluid concentrations of mHTT and NfL have potential for early and sensitive detection of alterations in HD and could be integrated into both clinical trials and the clinic.
SummaryDysfunction of microglia, the brain’s immune cells, is linked to neurodegeneration. Homozygous missense mutations in TREM2 cause Nasu-Hakola disease (NHD), an early-onset dementia. To study the consequences of these TREM2 variants, we generated induced pluripotent stem cell-derived microglia-like cells (iPSC-MGLCs) from patients with NHD caused by homozygous T66M or W50C missense mutations. iPSC-MGLCs expressed microglial markers and secreted higher levels of TREM2 than primary macrophages. TREM2 expression and secretion were reduced in variant lines. LPS-mediated cytokine secretion was comparable between control and TREM2 variant iPSC-MGLCs, whereas survival was markedly reduced in cells harboring missense mutations when compared with controls. Furthermore, TREM2 missense mutations caused a marked impairment in the phagocytosis of apoptotic bodies, but not in Escherichia coli or zymosan substrates. Coupled with changes in apoptotic cell-induced cytokine release and migration, these data identify specific deficits in the ability of iPSC-MGLCs harboring TREM2 missense mutations to respond to specific pathogenic signals.
The neurodegenerative disorder Alzheimer's disease is characterised by the formation of β-amyloid plaques and neurofibrillary tangles in the brain parenchyma, which cause synapse and neuronal loss. This leads to clinical symptoms, such as progressive memory deficits. Clinically, these pathological changes can be detected in the cerebrospinal fluid and with brain imaging, although reliable blood tests for plaque and tangle pathologies remain to be developed. Plaques and tangles often co-exist with other brain pathologies, including aggregates of transactive response DNA-binding protein 43 and Lewy bodies, but the extent to which these contribute to the severity of Alzheimer's disease is currently unknown. In this ‘At a glance’ article and poster, we summarise the molecular biomarkers that are being developed to detect Alzheimer's disease and its related pathologies. We also highlight the biomarkers that are currently in clinical use and include a critical appraisal of the challenges associated with applying these biomarkers for diagnostic and prognostic purposes of Alzheimer's disease and related neurodegenerative disorders, also in their prodromal clinical phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.