The purpose of this review was to determine whether past research provides conclusive evidence about the effects of type and timing of ingestion of specific sources of protein by those engaged in resistance weight training. Two essential, nutrition-related, tenets need to be followed by weightlifters to maximize muscle hypertrophy: the consumption of 1.2-2.0 g protein.kg -1 of body weight, and ≥44-50 kcal.kg-1 of body weight. Researchers have tested the effects of timing of protein supplement ingestion on various physical changes in weightlifters. In general, protein supplementation pre- and post-workout increases physical performance, training session recovery, lean body mass, muscle hypertrophy, and strength. Specific gains, differ however based on protein type and amounts. Studies on timing of consumption of milk have indicated that fat-free milk post-workout was effective in promoting increases in lean body mass, strength, muscle hypertrophy and decreases in body fat. The leucine content of a protein source has an impact on protein synthesis, and affects muscle hypertrophy. Consumption of 3–4 g of leucine is needed to promote maximum protein synthesis. An ideal supplement following resistance exercise should contain whey protein that provides at least 3 g of leucine per serving. A combination of a fast-acting carbohydrate source such as maltodextrin or glucose should be consumed with the protein source, as leucine cannot modulate protein synthesis as effectively without the presence of insulin. Such a supplement post-workout would be most effective in increasing muscle protein synthesis, resulting in greater muscle hypertrophy and strength. In contrast, the consumption of essential amino acids and dextrose appears to be most effective at evoking protein synthesis prior to rather than following resistance exercise. To further enhance muscle hypertrophy and strength, a resistance weight- training program of at least 10–12 weeks with compound movements for both upper and lower body exercises should be followed.
ObjectivesThe aims of this study were to: (1) determine the validity and reliability of the Nova Biomedical Lactate Plus portable analyzer, and quantify any fixed or proportional bias; (2) determine the effect of any bias on the determination of the lactate threshold and (3) determine the effect that blood sampling methods have on validity and reliability.DesignIn this method comparison study we compared blood lactate concentration measured using the Lactate Plus portable analyzer to lactate concentration measured by a reference analyzer, the YSI 2300.SettingUniversity campus in the USA.ParticipantsFifteen active men and women performed a discontinuous graded exercise test to volitional exhaustion on a motorised treadmill. Blood samples were taken via finger prick and collected in microcapillary tubes for analysis by the reference instrument at the end of each stage. Duplicate samples for the portable analyzer were either taken directly from the finger or from the micro capillary tubes.Primary outcome measurementsOrdinary least products regressions were used to assess validity, reliability and bias in the portable analyzer. Lactate threshold was determined by visual inspection.ResultsThough measurements from both instruments were correlated (r=0.91), the differences between instruments had large variability (SD=1.45 mM/l) when blood was sampled directly from finger. This variability was reduced by ∼95% when both instruments measured blood collected in the capillary tubes. As the proportional and fixed bias between instruments was small, there was no difference in estimates of the lactate threshold between instruments. Reliability for the portable instrument was strong (r=0.99, p<0.05) with no proportional bias (slope=1.02) and small fixed bias (−0.19 mM/l).ConclusionsThe Lactate Plus analyzer provides accurate and reproducible measurements of blood lactate concentration that can be used to estimate workloads corresponding to blood lactate transitions or any absolute lactate concentrations.
Crohn's disease patients with sufficient vitamin D levels experienced a 43 % greater extension peak torque. Although vitamin D deficiency has been associated with neuromuscular dysfunction, there were no differences in serum vitamin D levels between the CD and healthy controls to explain the decreased muscle strength.
As an appealing alternative to reference glucose analyzers, portable glucometers are recommended for self-monitoring at home, in the field, and in research settings. The purpose was to characterize the accuracy and precision, and bias of glucometers in biomedical research. Fifteen young (20-36 years; mean = 24.5), moderately to highly active men (n = 10) and women (n = 5), defined by exercising 2 to 3 times a week for the past 6 months, were given an oral glucose tolerance test (OGTT) after an overnight fast. Participants ingested 50, 75, or 150 grams of glucose over a 5-minute period. The glucometer was compared to a reference instrument. The glucometer had 39% of values within 15% of measurements made using the reference instrument ranging from 45.05 to 169.37 mg/dl. There was both a proportional (-0.45 to -0.39) and small fixed (5.06 and 0.90 mg/dl) bias. Results of the present study suggest that the glucometer provided poor validity and reliability results compared to the results provided by the reference laboratory analyzer. The portable glucometers should be used for patient management, but not for diagnosis, treatment, or research purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.