The composition of cartilage is known to change during fetal and postnatal development. The objectives of this study were to characterize the compressive biomechanical properties of the 1 mm thick articular layer of cartilage of the distal femur from thirdtrimester bovine fetuses, from 1 to 3 week old bovine calf and from young adult bovine knees, and to correlate these properties with tissue components. The confined compression modulus increased 180%) from the fetus to the calf and adult. The hydraulic permeability at 45% offset compression (relative to the free-swelling thickness) decreased by 70'Yo from fetus to adult. These development-associated changes in biomechanical properties were primarily associated with a marked (-2-3-fold) increase during development in collagen content and no detectable change in glycosaminoglycan (GAG) content. A role for collagen in the compressive properties of cartilage and the gradual increase in collagen during development suggest that collagen metabolism is critical for cartilage tissue engineering and repair therapies.
One approach to repairing articular defects is to regenerate cartilage by recapitulating the changes that occur during fetal and postnatal growth into adulthood, and to thereby restore functional biomechanical properties, especially those of the normally strong superficial region. The objectives of this study were ( I ) to characterize and compare tensile biomechanical properties of the superficial region of articular cartilage of the patellofemoral groove (PFG) and femoral condyle (FC) from bovine animals over a range of growth stages (third-trimester fetal, 1-3 week-old calf, and adult), and (2) to determine if these properties were correlated with collagen network components. With growth from the fetus to the adult, the equilibrium and dynamic tensile moduli and strength of cartilage samples increased by an average of 391-1060%, while the strain at the failure decreased by 43%. The collagen concentration (per wet weight) increased by 98'%), and the pyridinoline cross-link concentration increased by 730%, while the glycosaminoglycan concentration remained unchanged or decreased slightly. Some growth-associated changes were location-specific, with tensile moduli and strength attaining higher values in the PFG than the FC. The growth-associated variation in tensile moduli and strength were associated strongly with variation in the contents of collagen and pyridinoline cross-link, but not sulfated glycosaminoglycan. The marked changes in the tensile properties and collagen network components of articular cartilage with growth suggest that such parameters may be used to evaluate the degrees to which regenerated cartilage recapitulates normal development and growth.
S U M M A R Y Articular cartilage is a heterogeneous tissue, with cell density and organization varying with depth from the surface. The objectives of the present study were to establish a method for localizing individual cells in three-dimensional (3D) images of cartilage and quantifying depth-associated variation in cellularity and cell organization at different stages of growth. Accuracy of nucleus localization was high, with 99% sensitivity relative to manual localization. Cellularity (million cells per cm 3 ) decreased from 290, 310, and 150 near the articular surface in fetal, calf, and adult samples, respectively, to 120, 110, and 50 at a depth of 1.0 mm. The distance/angle to the nearest neighboring cell was 7.9 m/31 Њ , 7.1 m/31 Њ , and 9.1 m/31 Њ for cells at the articular surface of fetal, calf, and adult samples, respectively, and increased/decreased to 11.6 m/31 Њ , 12.0 m/30 Њ , and 19.2 m/ 25 Њ at a depth of 0.7 mm. The methodologies described here may be useful for analyzing the 3D cellular organization of cartilage during growth, maturation, aging, degeneration, and regeneration.
Articular cartilage biochemical composition and mechanical properties evolve during in utero and in vivo growth, with marked differences between fetus, newborn, and young adult. The objectives of this study were to test whether in vitro growth of bovine fetal and newborn calf articular cartilage explants resulted in changes in biochemical and tensile properties during up to 6 weeks of free-swelling culture in serum-supplemented medium. During this culture period, both fetal and calf cartilage grew markedly in size, increasing in dry and wet mass by 150-270%. This was due in part to increases in sulfated glycosaminoglycan (+248%), collagen (+96%), and pyridinoline cross-link (+133%). This was accompanied by an increase in water content so that the concentration of matrix components decreased, despite the overall net increase in mass. The ratio of pyridinoline cross-link to collagen remained low and characteristic of immature tissue. The equilibrium and dynamic tensile moduli and strength of both fetal and calf cartilage decreased during the culture period. The biochemical and biomechanical properties of the cartilage explants were correlated, such that the low values of modulus and strength were associated with low concentrations of collagen and pyridinoline. Thus, the tested culture conditions supported growth and maintenance cartilage in an immature state, but did not induce biomechanical or collagen network maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.