We have developed hydrophobic electrodes that provide all morphological waveforms without distortion of an ECG signal for both dry and water-immersed conditions. Our electrode is comprised of a mixture of carbon black powder (CB) and polydimethylsiloxane (PDMS). For feasibility testing of the CB/PDMS electrodes, various tests were performed. One of the tests included evaluation of the electrode-to-skin contact impedance for different diameters, thicknesses, and different pressure levels. As expected, the larger the diameter of the electrodes, the lower the impedance and the difference between the large sized CB/PDMS and the similarly-sized Ag/AgCl hydrogel electrodes was at most 200 kΩ, in favor of the latter. Performance comparison of CB/PDMS electrodes to Ag/AgCl hydrogel electrodes was carried out in three different scenarios: a dry surface, water immersion, and postwater immersion conditions. In the dry condition, no statistical differences were found for both the temporal and spectral indices of the heart rate variability analysis between the CB/PDMS and Ag/AgCl hydrogel (p > 0.05) electrodes. During water immersion, there was significant ECG amplitude reduction with CB/PDMS electrodes when compared to wet Ag/AgCl electrodes kept dry by their waterproof adhesive tape, but the reduction was not severe enough to obscure the readability of the recordings, and all morphological waveforms of the ECG signal were discernible even when motion artifacts were introduced. When water did not penetrate tape-wrapped Ag/AgCl electrodes, high fidelity ECG signals were observed. However, when water penetrated the Ag/AgCl electrodes, the signal quality degraded to the point where ECG morphological waveforms were not discernible.
Although tissue engineered skin substitutes have demonstrated some clinical success for the treatment of chronic wounds such as diabetic and venous ulcers, persistent graft take and stability remain concerns. Current bilayered skin substitutes lack the characteristic microtopography of the dermal-epidermal junction that gives skin enhanced mechanical stability and creates cellular microniches that differentially promote keratinocyte function to form skin appendages and enhance wound healing. We developed a novel micropatterned dermal-epidermal regeneration matrix (μDERM) which incorporates this complex topography and substantially enhances epidermal morphology. Here, we describe the use of this 3D in vitro culture model to systematically evaluate different topographical geometries, to determine their relationship to keratinocyte function. We identified three distinct keratinocyte functional niches: the proliferative niche (narrow geometries), the basement membrane protein synthesis niche (wide geometries) and the putative keratinocyte stem cell niche (narrow geometries and corners). Specifically, epidermal thickness and keratinocyte proliferation is significantly (p<0.05) increased in 50 and 100 μm channels while laminin-332 deposition is significantly (p<0.05) increased in 400 μm channels compared to flat controls. Additionally, β1brip63+ keratinocytes, putative keratinocyte stem cells, preferentially cluster in channel geometries (similar to clustering observed in native skin) compared to a random distribution on flats. This study identifies specific target geometries to enhance skin regeneration and graft performance. Furthermore, these results suggest the importance of μDERM microtopography in designing next generation skin substitutes. Finally, we anticipate that 3D organotypic cultures on μDERMS will provide a novel tissue engineered skin substitute for in vitro investigations of skin morphogenesis, wound healing and pathology.
We developed a method to produce discrete fibrin microthreads, which can be seeded with human mesenchymal stem cells (hMSCs) and used as a suture to enhance the efficiency and localization of cell delivery. To assess the efficacy of fibrin microthreads to support hMSC attachment, proliferation and survival, microthreads (100 µm diameter per microthread) were bundled together, seeded with 50,000 hMSCs for 2 hours, and cultured for 5 days. Cell density on microthread bundles increased over time in culture, to a maximum average density of 731±101 cells/mm 2 after 5 days. A LIVE/DEAD assay confirmed that the cells were viable and Ki-67 staining verified hMSC proliferation. Additionally, functional differentiation assays demonstrated that hMSCs cultured on microthreads retained their ability to differentiate into adipocytes and osteocytes. The results of this study demonstrate that fibrin microthreads support hMSC viability and proliferation, while maintaining their multipotency. We anticipate that these cell-seeded fibrin microthreads will serve a platform technology to improve localized delivery and engraftment of viable cells to damaged tissue.
In this study, we evaluated the performance of two novel conductive carbon black (CB) and polydimethlysiloxane (PDMS) bio-potential electrodes, with and without an integrated flexible copper mesh, against commercially available electrodes (Polar(®) textile, Silver-coated textile, and carbon rubber). The electrodes were tested in three types of water (fresh/unfiltered, chlorinated, and salt water). Our testing revealed that our CB/PDMS electrode with integrated copper mesh provided a high-fidelity ECG signal morphologies without any amplitude degradation in all of the types of water tested (N = 10). The non-meshed CB/PDMS electrodes were also subjected to a long-term durability test by the US Navy SCUBA divers during which the electrodes maintained ECG signal quality for a 6 h period of continuous use. The results of a material degradation analysis revealed the CB/PDMS composite material does not exhibit significant changes in physical integrity after prolonged exposure to the test conditions. The newly developed meshed CB/PDMS electrodes have the potential to be used in a wide variety of both dry and wet environments including the challenge of obtaining ECG signals in salt water environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.