RESUMO: O sítio Lagoa dos Freitas se caracteriza como um concheiro sobre dunas holocênicas e as datas radiocarbônicas obtidas mostram uma cronologia com dois horizontes distintos de ocupação, o primeiro entre 1.360-1.275 cal. AP e o segundo entre 485-305 cal. AP. Com o objetivo de caracterizar a exploração de recursos animais em cada período de ocupação, este trabalho realizou um estudo zooarqueológico dos conjuntos faunísticos vertebrados de cada horizonte, a saber, 4005 restos para a camada I, mais recente, e 10299 restos para a Camada II, mais antiga, somando um total de 14304 restos analisados. Foram identificadas três classes de vertebrados: peixes, mamíferos e aves. Os peixes identificados são em sua maioria bagres marinhos da família Ariidae, robalos da família Centropomidae e corvinas e papa-terras da família Sciaenidae, sendo a corvina (Micropogonias furnieri) a espécie individualmente mais abundante. Para a fauna terrestre, apenas roedores caviomorfos foram identificados, Hidrochoerus hydrochaeris e Ctenomis minutus. Os resultados deste estudo mostram que houve uma exploração mais intensa de ambientes estuarinos em comparação aos ambientes terrestres nas áreas do entorno do sítio e, em especial, o desenvolvimento de atividades de pesca, sem que diferenças significativas tenham sido encontradas entre os diferentes horizontes de ocupação no que se refere a exploração da fauna vertebrada. Estes resultados são importantes porque pouco se conhece das modalidades de apropriação de recursos animais pelos grupos humanos associados aos sambaquis tardios do litoral catarinense.
Background: Given the increasing rates at which people have been infected by Covid-19 evolving to case-fatality rates on a global scale and the context of there being a world-wide socio-economic crisis, decision-making must be undertaken based on prioritizing effective measures to control and combat the disease since there is a lack of effective drugs. Method: This paper explores the determinant factors of the COVID-19 pandemic and its impacts on Recife, Pernambuco-Brazil by performing both local and global spatial regression analysis on two types of environmental data-sets. Data were obtained from ten specific days between late April and early July 2020, comprehending the ascending, peaking and descending behaviours of the curve of infections.Results: This study highlights clusters of the most affected neighbourhoods and their determinant effects. We have observed the increasing phase with hotspots of confirmed cases in a well-developed and heavily densely-populated neighbourhood of Recife city, then evolving for hotspots of case-fatality rates into areas characterised by having a precarious provision of public services and low-income population. The results also help to understand the influence of the age, income, level of education of the population and, additionally, the people’s access to public services, on the behaviour of the virus across neighbourhoods.Conclusion: This study supports government measures against the spread of Covid-19 in heterogeneous cities, evidencing social inequality as a driver for a high incidence of fatal cases of the disease. Understanding the variables which influence the local dynamics of the virus spread becomes vital for identifying the most vulnerable regions for which prevention actions need to be developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.