Chilling requirement (CR) for bud dormancy completion determines the time of bud break in apple (Malus × domestica Borkh.). The molecular control of bud dormancy is highly heritable, suggesting a strong genetic control of the trait. An available Infinium II SNP platform for genotyping containing 8,788 single nucleotide polymorphic markers was employed, and linkage maps were constructed in a F1 cross from the low CR M13/91 and the moderate CR cv. Fred Hough. These maps were used to identify quantitative trait loci (QTL) for bud break date as a trait related to dormancy release. A major QTL for bud break was detected at the beginning of linkage group 9 (LG9). This QTL remained stable during seven seasons in two different growing sites. To increase mapping efficiency in detecting contributing genes underlying this QTL, 182 additional SNP markers located at the locus for bud break were used. Combining linkage mapping and structural characterization of the region, the high proportion of the phenotypic variance in the trait explained by the QTL is related to the coincident positioning of Arabidopsis orthologs for ICE1, FLC, and PRE1 protein-coding genes. The proximity of these genes from the most explanatory markers of this QTL for bud break suggests potential genetic additive effects, reinforcing the hypothesis of inter-dependent mechanisms controlling dormancy induction and release in apple trees.
Information related to open reading frame (ORF) organization, transcription regulation and promoter sequence has been available for the Mycoplasma hyopneumoniae 7448 genome, demonstrating that the ORFs are continuously transcribed (cotranscription) in large clusters. A species-specific position-specific scoring matrix was applied to scan for putative promoters upstream of all coding sequences on a genome scale in M. hyopneumoniae. This study consisted of a detailed in silico promoter localization analysis by scanning the position-specific promoters upstream of predicted ORF clusters (OCs) and mCs (monocistronic genes) in the M. hyopneumoniae whole genome; this was combined with experimental data for the promoterless ORFs. Promoter-like sequences were found in 86% of the OCs (from the OC first gene) and in 85% of the mCs. A transcription analysis of the promoterless ORF was performed by RT-PCR. This strategy allowed the definition of a specific promoter sequence for all OCs and mCs indicating that all the transcriptional units are preceded by putative promoter sequences (matrix and manually located) and providing evidence for functional gene organization in the M. hyopneumoniae genome. These results shown that the species-specific, position-specific scoring matrix for promoter prediction is effective, further increasing the knowledge of gene organization and transcription initiation in mycoplasmas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.