Chlorophyll compounds and their derivatives containing metal or phytyl chain can be used as photosensitizer in photodynamic inactivation of microorganisms (PDI). So, the physicochemical properties and antimicrobial effect of chlorophyll derivatives were investigated: Mg-chlorophyll (Mg-Chl), Zn-chlorophyll (Zn-Chl), Zn-chlorophyllide (Zn-Chlde), Cu-chlorophyll (Cu-Chl), pheophytin (Pheo) and pheophorbide (Pheid). The photobleaching experiments showed photostability according to Cu-Chl > Pheo ∼ Pheid ≫ Zn-Chl ∼ Zn-Chlde > Mg-Chl. This order was discussed in terms of metal and the phytyl chain presences. Pheid and Zn-Chl in aqueous Tween 80 solution exhibited highest singlet oxygen yield compared with the other derivatives. Chlorophyll derivatives (CD) with phytyl chain was limited by the self-aggregation phenomenon at high concentrations, even in micellar systems (Tween 80 and P-123). The antimicrobial effect of CD derivatives was investigated against Staphylococcus aureus, Escherichia coli, Candida albicans and Artemia salina. Pheid showed the best results against all organisms tested, Zn-Chlde was an excellent bactericide in the dark and Cu-Chl had no PDI effect. No correlation with CD uptake by microorganisms and darkness cytotoxicity was found. The physicochemical properties allied to bioassays results indicate that Mg-Chl, Pheo, Zn-Chl and Pheid are good candidates for PDI.
Chlorophyll (Mg-Chl) and its derivatives, zinc chlorophyll (Zn-Chl), copper chlorophyll (Cu-Chl), pheophytin (Pheo), pheophorbide (Pheid), and zinc chlorophyllide (Zn-Chld), were studied as to their acid-base equilibrium properties, hydrophobicity, stability, binding, and relative localization in neutral surfactant micellar systems. The stability order of metalochlorophyll (pH(M)) in acidic medium was found to be Cu-Chl > Zn-Chld > Zn-Chl > Mg-Chl. The apparent pK(a) for protonation of porphyrin ring nitrogens was around 1.0 for all derivatives. The pK(a) for protonation of carboxylate phorbide was 5.9 for Pheid and 2.4 for Zn-Chld. This difference was attributed to complexation of carboxylate with zinc. The hydrophobicity of chlorophyll in relation to the ability of partitioning the cell membrane lipid layer was estimated in the octanol/water biphasic system. Pheo, a more hydrophobic molecule, presented the highest partition coefficient (K(P)) in the organic phase, followed by Cu-Chl, Mg-Chl, Zn-Chl, Pheid, and Zn-Chld. The hydrophobic character was the key to relative drug location in the micellar systems. All studied derivatives interacted strongly with Tween 80 micellar systems, and particularly with P-123. For both surfactants, the order followed by binding constant (K(b)) was Zn-Chld > Pheo > Cu-Chl > Mg-Chl > Zn-Chl > Pheid, while binding constants estimated for the Chl containing the phytyl group correlated with K(P). Fluorescence quenching studies have shown that phorbides are located in a less hydrophobic region than the phytyl chain-containing derivatives, which are located preferentially in a deeper micellar microenvironment. Thus, the association of the chlorophylls with specific binding sites of micellar systems is strongly modulated by the presence of phytyl chains and metal coordinated to the porphyrinic ring.
Beliefs in scientifically unsubstantiated ideas were investigated with a study that contrasted college students' attitudes toward paranormal phenomena before and after exposure to skeptical arguments concerning these events. Specifically, students enrolled in 2 sections of a psychological statistics course were exposed to illustrations of statistical concepts that were either paranormal-themed or not, with a 3rd group of participants completing a class that focused on the critical analysis of believer-and skeptic-based ideas surrounding paranormal phenomena. Results revealed that skepticism increased, over time, only when direct exposure to paranormal phenomena was included in one's course work. Results are discussed in terms of the educational and societal implications for encouraging skepticism of scientifically questionable claims.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.