Abstract. This paper describes the solar forcing dataset for CMIP6 and highlights in particular changes with respect to the CMIP5 recommendation. The solar forcing is provided for radiative properties, i.e., total solar irradiance (TSI) and solar spectral irradiance (SSI), and F10.7 cm radio flux, as well as particle forcing, i.e., geomagnetic indices Ap and Kp, and ionisation rates to account for effects of solar protons, electrons and galactic cosmic rays. This is the first time that a recommendation for solar-driven particle forcing is provided for a CMIP exercise. The solar forcing dataset is provided at daily and monthly resolution separately for the CMIP6 Historical Simulation (1850–2014), for the future (2015–2300), including an additional extreme Maunder Minimum-like sensitivity scenario, as well as for a constant and a time-varying forcing for the preindustrial control simulation. The paper not only describes the forcing dataset, but also provides detailed recommendations for how to implement the different forcing components in climate models. The TSI and SSI time series are defined as averages of two (semi-) empirical solar irradiance models, namely the NRLTSI2/NRLSSI2 and SATIRE-TS. A new and lower TSI value is recommended: the contemporary solar cycle-average is now 1361.0 W/m2. The slight negative trend in TSI during the last three solar cycles in CMIP6 is statistically indistinguishable from available observations and only leads to a small global radiative forcing of −0.04 W/m2. In the 200–400 nm range, which is also important for ozone photochemistry, CMIP6 shows a larger solar cycle variability contribution to TSI than CMIP5 (50 % as compared to 35 %). The CMIP6 dataset is tested and compared to its CMIP5 predecessor using timeslice experiments of two chemistry-climate models and a reference radiative transfer model. The changes in the background SSI in the CMIP6 dataset, as compared to CMIP5, impact on climatological stratospheric conditions (lower shortwave heating rates (−0.35 K/day at the stratopause), cooler stratospheric temperatures (−1.5 K in the upper stratosphere), lower ozone abundances in the lower stratosphere (−3 %), and higher ozone abundances (+1.5 % in the upper stratosphere and lower mesosphere). Between the maximum and minimum phases of the 11-year solar cycle, there is an increase in shortwave heating rates (+0.2 K/day at the stratopause), temperatures (~1 K at the stratopause), and ozone (+2.5 % in the upper stratosphere) in the tropical upper stratosphere using the CMIP6 forcing dataset. This solar cycle response is slightly larger, but not statistically significantly different from that for the CMIP5 forcing dataset. CMIP6 models with a well-resolved shortwave radiation scheme are encouraged to use SSI, as well as solar-induced ozone signals, in order to better represent solar climate variability compared to models that only prescribe TSI and/or exclude the solar-ozone response. Monthly mean solar-induced ozone variations will also be incorporated into the CCMI CMIP6 Ozone Database for climate models that do not calculate ozone interactively. CMIP6 models with interactive chemistry are encouraged to use the particle forcing which will allow the potential long-term effect of particles to be addressed for the first time. The consideration of particle forcing has been shown to significantly improve the representation of reactive nitrogen and ozone variability in the polar middle atmosphere, eventually resulting in further improvements of the representation of solar climate variability.
<p><strong>Abstract.</strong> We perform the first multi-model comparison of the impact of nudged meteorology on the stratospheric residual circulation using hindcast simulations from the Chemistry Climate Model Initiative (CCMI). We examine simulations over the period 1980&#8211;2009 from 5 models in which the meteorological fields are nudged towards reanalysis data and compare with equivalent free-running simulations from 9 models. We show that nudging meteorology does not constrain the mean strength of the stratospheric residual circulation and that the inter-model spread is similar, or even larger, than in the free-running simulations. The nudged simulations also simulate stronger upwelling in the tropical lower stratosphere compared to the residual circulation estimated directly from the reanalyses they are nudged towards. Downward control calculations reveal substantial differences between the mean lower stratospheric tropical upward mass flux (TUMF) computed from the modeled wave forcing and that calculated directly from the residual circulation. Although the mean circulation is poorly constrained, the nudged simulations show a high degree of consistency in the interannual variability of the TUMF in the lower stratosphere, which is related to the contribution to variability from the resolved wave forcing. We apply a multiple linear regression (MLR) model to separate the drivers of interannual and long-term variations in the simulated TUMF. The MLR model explains up to ~&#8201;75&#8201;% of the variance in TUMF in the nudged simulations and reveals a statistically significant positive trend for most models in TUMF over the period 1980&#8211;2009. Overall, nudging meteorological fields leads to increased inter-model spread for most of the measures of the mean climatological stratospheric residual circulation assessed in this study. Our findings show that while nudged simulations by construction produce accurate temperatures and realistic representations of fast horizontal transport, this is not necessarily the case for the slower zonal mean vertical transport. Consequently, caution is required when using nudged simulations to interpret long-lived stratospheric tracers that are controlled by the residual circulation.</p>
<p><strong>Abstract.</strong> The prominent annual cycle in temperatures (with maximum peak to peak amplitude of ~ 8&#8201;K around 70&#8201;hPa and ~ 6&#8201;K at 90&#8201;hPa) is a key feature of the tropical tropopause layer (TTL). There is also a strong annual cycle observed in both ozone and water vapour in the TTL, with the latter understood as a consequence of the temperature annual cycle. The radiative contributions of the annual cycle in ozone and water vapour to the temperature annual cycle are studied, first with a seasonally evolving fixed dynamical heating calculation (SEFDH) where the dynamical heating is assumed to be unaffected by the radiative heating. In this framework, the variations in ozone and water vapour derived from satellite data lead to variations in temperature that are respectively in phase and out of phase with the observed annual cycle. The ozone contribution is at the upper range of previous calculations. This difference in phasing can be understood from the fact that an increase in water vapour cools the TTL, predominantly through enhanced local emission, whereas an increase in ozone warms the TTL, mostly through enhanced absorption of upwelling longwave radiation from the troposphere. The relative phasing of the water vapour and ozone effects on temperature is further influenced by the fact that for water vapour there is a strong non-local effect on temperatures from variations in concentrations occurring in lower layers of the TTL. In contrast, for ozone it is the local variations in concentration that have the strongest impact on local temperature variations. The factors that determine the vertical structure of the annual cycle in temperature are also examined. Radiative damping time scales are shown to maximize over a broad layer centred on the cold point. Non-radiative processes in the upper troposphere are inferred to impose a strong constraint on temperature perturbations below 130&#8201;hPa. These effects, combined with the annual cycles in dynamical and radiative heating, which both peak above the cold point, result in a maximum amplitude of temperature response that is relatively localized around 70&#8201;hPa. Finally, the SEFDH assumption is relaxed by considering the temperature responses to ozone and water vapour variations in a zonally symmetric dynamical model. While the magnitude of the tropical averaged temperature annual cycle in this framework is found to be consistent with the SEFDH results, the effects of the dynamical adjustment act to reduce the strong latitudinal gradients and inter-hemispheric asymmetry in the temperature response. This results in a temperature response that shows a considerably smoother structure than inferred from the SEFDH model. Whilst precise numerical values are likely to be sensitive to changes in the details of radiation code and of ozone and water vapour concentrations, the net contribution to the annual cycle in temperature from both ozone and water vapour averaged between 20&#176;&#8201;N&#8211;S, calculated in this work, is substantial and around 35&#8201;% of the observed peak to peak amplitude at both 70&#8201;hPa and 90&#8201;hPa.</p>
Abstract. The impact of changes in incoming solar irradiance on stratospheric ozone abundances should be included in climate model simulations to fully capture the atmospheric response to solar variability. This study presents the first systematic comparison of the solar-ozone response (SOR) during the 11 year solar cycle amongst different chemistry-climate models (CCMs) and ozone databases specified in climate models that do not include chemistry. We analyse the SOR in eight 5CCMs from the WCRP/SPARC Chemistry-Climate Model Initiative (CCMI-1) and compare these with three ozone databases: the Bodeker Scientific database, the SPARC/AC&C database for CMIP5, and the SPARC/CCMI database for CMIP6. The results reveal substantial differences in the representation of the SOR between the CMIP5 and CMIP6 ozone databases. The peak amplitude of the SOR in the upper stratosphere (1-5 hPa) decreases from 5% to 2% between the CMIP5 and CMIP6 10 databases. This difference is because the CMIP5 database was constructed from a regression model fit to satellite observations, whereas the CMIP6 database is constructed from CCM simulations, 1 Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017Discuss., doi:10.5194/acp- -477, 2017 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 31 May 2017 c Author(s) 2017. CC-BY 3.0 License. which use a spectral solar irradiance (SSI) dataset with relatively weak UV forcing. The SOR in the CMIP6 ozone database is therefore implicitly more similar to the SOR in the CCMI-1 models than to the CMIP5 ozone database, which shows a greater resemblance in amplitude and structure to the 15 SOR in the Bodeker database. The latitudinal structure of the annual mean SOR in the CMIP6 ozone database and CCMI-1 models is considerably smoother than in the CMIP5 database, which shows strong gradients in the SOR across the midlatitudes owing to the paucity of observations at high latitudes. The SORs in the CMIP6 ozone database and in the CCMI-1 models show a strong seasonal dependence, including large meridional gradients at mid to high latitudes during winter; such sea-
The 11-year solar cycle forcing is recognised as a potentially important atmospheric forcing; however, there remain uncertainties in characterising the effects of the solar variability on the atmosphere from observations and models. Here we 15 present the first detailed assessment of the atmospheric response to the 11-year solar cycle in the UM-UKCA chemistryclimate model using an ensemble of integrations over the recent past. Comparison of the model simulations is made with observations and reanalysis. Importantly, in contrast to the majority of previous studies of the solar cycle impacts, we pay particular attention to the role of detection method by comparing the results diagnosed using both a composite and a multiple linear regression method. We show that stratospheric solar responses diagnosed using both techniques largely agree with 20 each other within the associated uncertainties; however, the results show that apparently different signals can be identified by the methods in the troposphere and in the tropical lower stratosphere. Lastly, we focus on the role of internal atmospheric variability on the detection of the 11-year solar responses by comparing the results diagnosed from individual model ensemble members (as opposed to those diagnosed from the full ensemble). We show overall agreement between the ensemble members in the tropical and mid-latitude mid-stratosphere-to-lower-mesosphere, but larger apparent differences at 25 NH high latitudes during the dynamically active season. Our results highlight the need for long data sets for confident detection of solar cycle impacts in the atmosphere, as well as for more research on possible interdependence of the solar cycle forcing with other atmospheric forcings and processes (e.g. QBO, ENSO… etc.).Atmos. Chem. Phys. Discuss., https://doi
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.