Simulated stratospheric temperatures over the period 1979–2016 in models from the Chemistry‐Climate Model Initiative are compared with recently updated and extended satellite data sets. The multimodel mean global temperature trends over 1979–2005 are −0.88 ± 0.23, −0.70 ± 0.16, and −0.50 ± 0.12 K/decade for the Stratospheric Sounding Unit (SSU) channels 3 (~40–50 km), 2 (~35–45 km), and 1 (~25–35 km), respectively (with 95% confidence intervals). These are within the uncertainty bounds of the observed temperature trends from two reprocessed SSU data sets. In the lower stratosphere, the multimodel mean trend in global temperature for the Microwave Sounding Unit channel 4 (~13–22 km) is −0.25 ± 0.12 K/decade over 1979–2005, consistent with observed estimates from three versions of this satellite record. The models and an extended satellite data set comprised of SSU with the Advanced Microwave Sounding Unit‐A show weaker global stratospheric cooling over 1998–2016 compared to the period of intensive ozone depletion (1979–1997). This is due to the reduction in ozone‐induced cooling from the slowdown of ozone trends and the onset of ozone recovery since the late 1990s. In summary, the results show much better consistency between simulated and satellite‐observed stratospheric temperature trends than was reported by Thompson et al. (2012, https://doi.org/10.1038/nature11579) for the previous versions of the SSU record and chemistry‐climate models. The improved agreement mainly comes from updates to the satellite records; the range of stratospheric temperature trends over 1979–2005 simulated in Chemistry‐Climate Model Initiative models is comparable to the previous generation of chemistry‐climate models.
The effects of urbanization on the rise of the European daily mean temperature is quantified by comparing European‐averaged temperatures based on all meteorological stations in the European Climate Assessment and Dataset with those based on three subsets of stations: from rural areas, from areas with low growth in urbanization, and from areas characterized by relatively low‐temperature increase. Land cover information is obtained using the CORINE (Coordination of Information on the Environment) data set, showing that most stations (75%) have a small percentage (up to 10%) of urban area within a 10 km radius and 81% saw no more than 1% change in urbanization between 1990 and 2006. The results show that urbanization explains 0.0026°C/decade of the annual‐averaged pan‐European temperature trend of 0.179°C/decade. This trend has a strong seasonality, being the largest in summer. Averaged over time, the effects of urbanization on the European‐averaged temperature has a strong seasonality as well.
Abstract. We perform the first multi-model intercomparison of the impact of nudged meteorology on the stratospheric residual circulation using hindcast simulations from the Chemistry–Climate Model Initiative (CCMI). We examine simulations over the period 1980–2009 from seven models in which the meteorological fields are nudged towards a reanalysis dataset and compare these with their equivalent free-running simulations and the reanalyses themselves. We show that for the current implementations, nudging meteorology does not constrain the mean strength of the stratospheric residual circulation and that the inter-model spread is similar, or even larger, than in the free-running simulations. The nudged models generally show slightly stronger upwelling in the tropical lower stratosphere compared to the free-running versions and exhibit marked differences compared to the directly estimated residual circulation from the reanalysis dataset they are nudged towards. Downward control calculations applied to the nudged simulations reveal substantial differences between the climatological lower-stratospheric tropical upward mass flux (TUMF) computed from the modelled wave forcing and that calculated directly from the residual circulation. This explicitly shows that nudging decouples the wave forcing and the residual circulation so that the divergence of the angular momentum flux due to the mean motion is not balanced by eddy motions, as would typically be expected in the time mean. Overall, nudging meteorological fields leads to increased inter-model spread for most of the measures of the mean climatological stratospheric residual circulation assessed in this study. In contrast, the nudged simulations show a high degree of consistency in the inter-annual variability in the TUMF in the lower stratosphere, which is primarily related to the contribution to variability from the resolved wave forcing. The more consistent inter-annual variability in TUMF in the nudged models also compares more closely with the variability found in the reanalyses, particularly in boreal winter. We apply a multiple linear regression (MLR) model to separate the drivers of inter-annual and long-term variations in the simulated TUMF; this explains up to ∼75 % of the variance in TUMF in the nudged simulations. The MLR model reveals a statistically significant positive trend in TUMF for most models over the period 1980–2009. The TUMF trend magnitude is generally larger in the nudged models compared to their free-running counterparts, but the intermodel range of trends doubles from around a factor of 2 to a factor of 4 due to nudging. Furthermore, the nudged models generally do not match the TUMF trends in the reanalysis they are nudged towards for trends over different periods in the interval 1980–2009. Hence, we conclude that nudging does not strongly constrain long-term trends simulated by the chemistry–climate model (CCM) in the residual circulation. Our findings show that while nudged simulations may, by construction, produce accurate temperatures and realistic representations of fast horizontal transport, this is not typically the case for the slower zonal mean vertical transport in the stratosphere. Consequently, caution is required when using nudged simulations to interpret the behaviour of stratospheric tracers that are affected by the residual circulation.
<p><strong>Abstract.</strong> We perform the first multi-model comparison of the impact of nudged meteorology on the stratospheric residual circulation using hindcast simulations from the Chemistry Climate Model Initiative (CCMI). We examine simulations over the period 1980&#8211;2009 from 5 models in which the meteorological fields are nudged towards reanalysis data and compare with equivalent free-running simulations from 9 models. We show that nudging meteorology does not constrain the mean strength of the stratospheric residual circulation and that the inter-model spread is similar, or even larger, than in the free-running simulations. The nudged simulations also simulate stronger upwelling in the tropical lower stratosphere compared to the residual circulation estimated directly from the reanalyses they are nudged towards. Downward control calculations reveal substantial differences between the mean lower stratospheric tropical upward mass flux (TUMF) computed from the modeled wave forcing and that calculated directly from the residual circulation. Although the mean circulation is poorly constrained, the nudged simulations show a high degree of consistency in the interannual variability of the TUMF in the lower stratosphere, which is related to the contribution to variability from the resolved wave forcing. We apply a multiple linear regression (MLR) model to separate the drivers of interannual and long-term variations in the simulated TUMF. The MLR model explains up to ~&#8201;75&#8201;% of the variance in TUMF in the nudged simulations and reveals a statistically significant positive trend for most models in TUMF over the period 1980&#8211;2009. Overall, nudging meteorological fields leads to increased inter-model spread for most of the measures of the mean climatological stratospheric residual circulation assessed in this study. Our findings show that while nudged simulations by construction produce accurate temperatures and realistic representations of fast horizontal transport, this is not necessarily the case for the slower zonal mean vertical transport. Consequently, caution is required when using nudged simulations to interpret long-lived stratospheric tracers that are controlled by the residual circulation.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.