Lithium metal has been regarded as the future anode material for high-energy-density rechargeable batteries due to its favorable combination of negative electrochemical potential and high theoretical capacity. However, uncontrolled lithium deposition during lithium plating/stripping results in low Coulombic efficiency and severe safety hazards. Herein, we report that nanodiamonds work as an electrolyte additive to co-deposit with lithium ions and produce dendrite-free lithium deposits. First-principles calculations indicate that lithium prefers to adsorb onto nanodiamond surfaces with a low diffusion energy barrier, leading to uniformly deposited lithium arrays. The uniform lithium deposition morphology renders enhanced electrochemical cycling performance. The nanodiamond-modified electrolyte can lead to a stable cycling of lithium | lithium symmetrical cells up to 150 and 200 h at 2.0 and 1.0 mA cm–2, respectively. The nanodiamond co-deposition can significantly alter the lithium plating behavior, affording a promising route to suppress lithium dendrite growth in lithium metal-based batteries.
Diamond particles of 5-10 nm in size can be produced in large quantities by denonating oxygen-lean explosives in a closed chamber. They have numerous useful properties and are used in applications ranging from lubricants to drug delivery. Aggregation of diamond nanoparticles is limiting wider use of this important carbon nanomaterial because most applications require single separated particles. We demonstrate that dry media assisted attrition milling is a simple, inexpensive, and efficient alternative to the current ways of deaggregating of nanodiamond. This technique uses water-soluble nontoxic and noncontaminating crystalline compounds, such as sodium chloride or sucrose. When milling is complete, the media can be easily removed from the product by water rinsing, which provides an advantage when compared to milling with ceramic microbeads. Using the dry media assisted milling with subsequent pH adjustment, it is possible to produce stable aqueous nanodiamond colloidal solutions with particles <10 nm in diameter, which corresponds to 1-2 primary nanodiamond particles. The study of milling kinetics and the characterization of the produced nanodiamond colloids led us to conclude that aggregates of less than 200 nm in diameter, observed at the tail of the pore size distribution of milled nanodiamond, are loosely bonded and rather dynamic in nature. Color change observed in ND colloids upon shifting their pH toward the basic end allowed us to demonstrate that the coloration comes from the light interaction with colloidal particles and not from an increase in nondiamond carbon content.
Nanodiamond particles produced by detonation synthesis and having ∼5 nm diameter possess unique properties, including low cell toxicity, biocompatibility, stable structure, and highly tailorable surface chemistry, which render them an attractive material for developing drug delivery systems. Although the potential for nanodiamonds in delivery and sustained release of anticancer drugs has been recently demonstrated, very little is known about the details of adsorption/desorption equilibria of these and other drugs on/from nanodiamonds with different purity, surface chemistry, and agglomeration state. Since adsorption is the basic mechanism most commonly used for the loading of drugs onto nanodiamond, the fundamental studies into the details of adsorption and desorption on nanodiamond are critically important for the rational design of the nanodiamond drug delivery systems capable of targeted delivery and triggered release, while minimizing potential leaks of dangerous drugs. In this paper we report on a physical-chemical study of the adsorption of doxorubicin and polymyxin B on nanodiamonds, analyzing the role of purification and surface chemistry of the adsorbent.
Hydrous RuO2 nanoparticles have been uniformly deposited onto nitrogen-enriched mesoporous carbons (NMCs) via a facile hydrothermal method. The nitrogen doping in the carbon framework not only provides reversible pseudocapacitance but also guides uniform deposition of RuO2 nanoparticles. As a result, an extremely high specific capacitance of 1733 F/g per RuO2, comparable to the theoretic capacitance of RuO2, is reached when 4.3 wt % of RuO2·1.25H2O is loaded onto the NMCs. Systematic studies show that either nitrogen-free or excess nitrogen doping result in RuO2 clusters formation and worsen the electrochemical performances. With intermediate nitrogen and RuO2 content (8.1 wt % N, 29.6 wt % of RuO2·1.25H2O), the composites deliver excellent power performance and high specific capacitance (402 F/g) with reversible capacitive response at 500 mV/s. The unique properties of nitrogen in textual, morphological, and electrochemical aspects may also provide further understanding about the effects of nitrogen doping and metal oxide deposition on supercapacitor performance.
Chronic inflammatory disorders such as rheumatoid arthritis are characterized by excessive pro-inflammatory or “M1” activation of macrophages, the primary cells of the innate immune system. Current treatments include delivery of glucocorticoids (e.g. dexamethasone – Dex), which reduce pro-inflammatory M1 behaviour in macrophages. However, these treatments have many off-target effects on cells other than macrophages, resulting in broad immunosuppression. To limit such side effects, drug-incorporated nano- and microparticles may be used to selectively target macrophages via phagocytosis, because of their roles as highly effective phagocytes in the body. In this study, surface-modified nanodiamond (ND) was explored as a platform for the delivery of dexamethasone to macrophages because of ND’s rich surface chemistry, which contributes to ND’s high potential as a versatile drug delivery platform. After finding that octadecylamine-functionalized nanodiamond (ND-ODA) enhanced adsorption of Dex compared to carboxylated ND, the effects of Dex, ND-ODA, and Dex-adsorbed ND-ODA on primary human macrophage gene expression were characterized. Surprisingly, even in the absence of Dex, ND-ODA had strong anti-inflammatory effects, as determined by multiplex gene expression via NanoString and by protein secretion analysis via ELISA. ND-ODA also inhibited expression of M2a markers yet increased the expression of M2c markers and phagocytic receptors. Interestingly, the adsorption of Dex to ND-ODA further increased some anti-inflammatory effects, but abrogated the effect on phagocytic receptors, compared to its individual components. Overall, the ability of ND-ODA to promote anti-inflammatory and pro-phagocytic behaviour in macrophages, even in the absence of loaded drugs, suggests its potential for use as an anti-inflammatory therapeutic to directly target macrophages through phagocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.