We demonstrate the feasibility of a nonsalt-based precursor pair--inorganic HPbI3 solid and organic CH3NH2 gas--for the deposition of uniform CH3NH3PbI3 perovskite thin films. The strong room-temperature solid-gas interaction between HPbI3 and CH3NH2 induces transformative evolution of ultrasmooth, full-coverage perovskite thin films at a rapid rate (in seconds) from nominally processed rough, partial-coverage HPbI3 thin films. The chemical origin of this behavior is elucidated via in situ experiments. Perovskite solar cells, fabricated using MAPbI3 thin films thus deposited, deliver power conversion efficiencies up to 18.2%, attesting to the high quality of the perovskite thin films deposited using this transformative process.
The higher operating temperatures in gas-turbine engines enabled by thermal barrier coatings (TBCs) engender new materials issues, viz silicate particles (sand, volcanic ash, fly ash) ingested by the engine melt on the hot TBC surfaces and form calcium-magnesium-alumino-silicate (CMAS) glass deposits. The molten CMAS glass degrades TBCs, leading to their premature failure. In this context, we have used the concept of optical basicity (OB) to provide a quantitative chemical basis for the screening of CMAS-resistant TBC compositions, which could also be extended to environmental barrier coatings (EBCs). By applying OB difference considerations to various major TBC compositions and two types of important CMASs -desert sand and fly ash-the 2ZrO 2 ÁY 2 O 3 solid solution (ss) TBC composition, with the potential for high CMAS-resistance, is chosen for this study. Here, we also demonstrate the feasibility of processing of 2ZrO 2 ÁY 2 O 3 (ss) air-plasma sprayed (APS) TBC using commercially developed powders. The resulting TBCs with typical APS microstructures are found to be single-phase cubic fluorite, having a thermal conductivity <0.9 WÁ(mÁK) -1 at elevated temperatures. The accompanying Part II paper presents results from experiments and analyses of high-temperature interactions between 2ZrO 2 ÁY 2 O 3 (ss) APS TBC and the two types of CMASs.
Grain boundaries can undergo phase-like transitions, called complexion transitions, in which their structure, composition, and properties change discontinuously as temperature, bulk composition, and other parameters are varied. Grain boundary complexion transitions can lead to rapid changes in the macroscopic properties of polycrystalline metals and ceramics and are responsible for a variety of materials phenomena as diverse as activated sintering and liquid-metal embrittlement. The property changes caused by grain boundary complexion transitions can be beneficial or detrimental. Grain boundary complexion engineering exploits beneficial complexion transitions to improve the processing, properties, and performance of materials. Here, we review the thermodynamic fundamentals of grain boundary complexion transitions, highlight the strongest experimental and computationalevidence for these transitions, clarify a number of important misconceptions, discuss the advantages of grain boundary complexion engineering, and summarize existing research challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.