RAS (KRAS, NRAS and HRAS) is the most frequently mutated gene family in cancers, and, consequently, investigators have sought an effective RAS inhibitor for more than three decades. Even 10 years ago, RAS inhibitors were so elusive that RAS was termed 'undruggable'. Now, with the success of allele-specific covalent inhibitors against the most frequently mutated version of RAS in non-small-cell lung cancer, KRAS G12C , we have the opportunity to evaluate the best therapeutic strategies to treat RAS-driven cancers. Mutation-specific biochemical properties, as well as the tissue of origin, are likely to affect the effectiveness of such treatments. Currently, direct inhibition of mutant RAS through allele-specific inhibitors provides the best therapeutic approach. Therapies that target RAS-activating pathways or RAS effector pathways could be combined with these direct RAS inhibitors, immune checkpoint inhibitors or T cell-targeting approaches to treat RAS-mutant tumours. Here we review recent advances in therapies that target mutant RAS proteins and discuss the future challenges of these therapies, including combination strategies. RAS (KRAS, NRAS and HRAS) is the most frequently mutated gene family in cancers.Mutations in KRAS are known drivers of three of the most lethal cancers (lung cancer, colorectal cancer (CRC) and pancreatic cancer). For more than three decades, development of effective therapeutics to inhibit RAS-driven oncogenesis has eluded the field and RAS was thought to be 'undruggable'. However, a clinically approved mutant selective KRAS therapy is now within sight as the FDA has granted an allele-specific covalent inhibitor, AMG 510, Fast Track designation 1 . AMG 510 binds to KRAS-G12C, the RAS mutatant most commonly found in non-small-cell lung tumours. This successful inhibition of KRAS-G12C, has given hope that a range of mutant RAS allele-specific targeted therapies could become therapeutically tractable.In normal cells, RAS is activated at the membrane downstream of growth factor receptors, including members of the epidermal growth factor receptor (EGFR) family (FIG. 1). This
Uveal melanomas are molecularly distinct from cutaneous melanomas and lack mutations in BRAF, NRAS, KIT, and NF1. Instead, they are characterized by activating mutations in GNAQ and GNA11, two highly homologous α subunits of Gαq/11 heterotrimeric G proteins, and in PLCB4 (phospholipase C β4), the downstream effector of Gαq signaling 1–3. We analyzed genomics data from 136 uveal melanoma samples and found a recurrent mutation in CYSLTR2 (cysteinyl leukotriene receptor 2) encoding a p.Leu129Gln substitution in 4 of 9 samples that lacked mutations in GNAQ, GNA11, and PLCB4 but in 0 of 127 samples that harbored mutations in these genes. The Leu129Gln CysLT2R mutant protein constitutively activates endogenous Gαq and is unresponsive to stimulation by leukotriene. Expression of Leu129Gln CysLT2R in melanocytes enforces expression of a melanocyte-lineage signature, drives phorbol ester–independent growth in vitro, and promotes tumorigenesis in vivo. Our findings implicate CYSLTR2 as a uveal melanoma oncogene and highlight the critical role of Gαq signaling in uveal melanoma pathogenesis.
SF3B1 is the most commonly mutated RNA splicing factor in cancer 1-4 , but the mechanisms by which SF3B1 mutations promote malignancy are poorly understood. Here, we integrated pan-Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#termsReprints and permissions information is available at www.nature.com/reprints.
SUMMARY Uveal melanoma (UM) is characterized by mutually exclusive activating mutations in GNAQ, GNA11, CYSLTR2, and PLCB4, four genes in a linear pathway to activation of PLCβ in almost all tumors and loss of BAP1 in the aggressive subset. We generated mice with melanocyte-specific expression of GNA11Q209L with and without homozygous Bap1 loss. The GNA11Q209L mice recapitulated human Gq-associated melanomas, and they developed pigmented neoplastic lesions from melanocytes of the skin and non-cutaneous organs, including the eye and leptomeninges, as well as at atypical sites, including the lymph nodes and lungs. The addition of Bap1 loss increased tumor proliferation and cutaneous melanoma size. Integrative transcriptome analysis of human and murine melanomas identified RasGRP3 to be specifically expressed in GNAQ/GNA11-driven melanomas. In human UM cell lines and murine models, RasGRP3 is specifically required for GNAQ/GNA11-driven Ras activation and tumorigenesis. This implicates RasGRP3 as a critical node and a potential target in UM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.