Approaches to treating autism often emphasize the use of intensive training to gradually improve behavior. Harris et al.'s (2015) recent report on perceptual learning by high-functioning (HF) adults with autism spectrum disorder (ASD) suggests that repetition in such interventions may actually foster inflexibility, especially in situations where individuals are trained to perform complex social behaviors. We agree that atypical learning mechanisms are an important consideration when developing behavioral interventions for ASD. However, Harris and colleagues' findings are insufficient for concluding that repetition will degrade later learning and generalization.Historically, the effects of ASD on learning mechanisms have received much less attention than its effects on social competence, despite the fact that the behaviors most diagnostic of ASD all depend heavily on generalization of past learning (Dawson et al., 2008). Recent neuroscience studies with animal models of ASD strongly suggest that synaptic mechanisms (including synaptic plasticity) and cortical circuitry are atypical in these animals (Bourgeron, 2009(Bourgeron, , 2015; learningrelated changes in neural connections are likely to also be abnormal (Leblanc and Fagiolini, 2011;Oberman et al., 2015). Visual learning tasks are known to depend on synaptic plasticity in visual cortex in typically developing (TD) animals (Cooke et al., 2015), and are associated with functional changes in V1 in TD adults (Yotsumoto et al., 2008). Recent neuroimaging studies suggest that even when adults with ASD perform similarly to TD adults after visual learning, changes in their cortical responses associated with learning may not be comparable (Schipul and Just, 2015). The fact that HF adults with ASD sometimes generalize abnormally after learning a texture discrimination task further supports the hypothesis that basic learning mechanisms operate differently in individuals with ASD. discovered that modifying perceptual training in ways that should reduce visual cortical adaptation improved learning and generalization by adults with ASD. They interpreted this finding as evidence that stimulus repetition during training adversely affected visual cortical processing, which in turn degraded generalization of the learned discrimination. They further speculated that similar degradation might occur in a wide range of learning contexts,and that the efficacy of behavioral interventions might be maximal only when repetition is reduced.
Digital video (DV) is widely used in education settings; however, few researchers have explored the neurocognitive underpinnings of DV tasks. Functional near‐infrared spectroscopy (fNIRS) records neurological activity in real time, is robust to movement, and provides information about cognitive load and engagement levels during authentic learning tasks. This study used fNIRS to measure hemodynamic responses while eight participants completed a DV task. Statistically significant differences in hemodynamic responses during the editing and evaluation stages of the DV task were found. fNIRS can help researchers understand cognitive load and engagement levels during DV tasks, which can help inform learning and instruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.