Abstract. Closing the terrestrial water budget is necessary to provide consistent estimates of budget components for understanding water resources and changes over time. Given the lack of in situ observations of budget components at anything but local scale, merging information from multiple data sources (e.g., in situ observation, satellite remote sensing, land surface model, and reanalysis) through data assimilation techniques that optimize the estimation of fluxes is a promising approach. Conditioned on the current limited data availability, a systematic method is developed to optimally combine multiple available data sources for precipitation (P ), evapotranspiration (ET), runoff (R), and the total water storage change (TWSC) at 0.5 • spatial resolution globally and to obtain water budget closure (i.e., to enforce P − ET − R − TWSC = 0) through a constrained Kalman filter (CKF) data assimilation technique under the assumption that the deviation from the ensemble mean of all data sources for the same budget variable is used as a proxy of the uncertainty in individual water budget variables. The resulting long-term , monthly 0.5 • resolution global terrestrial water cycle Climate Data Record (CDR) data set is developed under the auspices of the National Aeronautics and Space Administration (NASA) Earth System Data Records (ESDRs) program. This data set serves to bridge the gap between sparsely gauged regions and the regions with sufficient in situ observations in investigating the temporal and spatial variability in the terrestrial hydrology at multiple scales. The CDR created in this study is validated against in situ measurements like river discharge from the Global Runoff Data Centre (GRDC) and the United States Geological Survey (USGS), and ET from FLUXNET. The data set is shown to be reliable and can serve the scientific community in understanding historical climate variability in water cycle fluxes and stores, benchmarking the current climate, and validating models.
Land surface models (LSMs) are a key tool to enhance process understanding and to provide predictions of the terrestrial hydrosphere and its atmospheric coupling. Distributed LSMs predict hydrological states and fluxes, such as land surface temperature (LST) or actual evapotranspiration (aET), at each grid cell. LST observations are widely available through satellite remote sensing platforms that enable comprehensive spatial validations of LSMs. In spite of the great availability of LST data, most validation studies rely on simple cell to cell comparisons and thus do not regard true spatial pattern information. The core novelty of this study is the development and application of two innovative spatial performance metrics, namely, empirical orthogonal function (EOF) and connectivity analyses, to validate predicted LST patterns by three LSMs (Mosaic, Noah, Variable Infiltration Capacity (VIC)) over the contiguous United States. The LST validation data set is derived from global High‐Resolution Infrared Radiometric Sounder retrievals for a 30 year period. The metrics are bias insensitive, which is an important feature in order to truly validate spatial patterns. The EOF analysis evaluates the spatial variability and pattern seasonality and attests better performance to VIC in the warm months and to Mosaic and Noah in the cold months. Further, more than 75% of the LST variability can be captured by a single pattern that is strongly correlated to air temperature. The connectivity analysis assesses the homogeneity and smoothness of patterns. The LSMs are most reliable at predicting cold LST patterns in the warm months and vice versa. Lastly, the coupling between aET and LST is investigated at flux tower sites and compared against LSMs to explain the identified LST shortcomings.
Abstract. Closing the terrestrial water budget is necessary to providing consistent estimates of budget components for understanding water resources and changes over time. Given the lack of in-situ observations of budget components at anything but local scale, merging information from multiple data sources (e.g. in-situ observation, satellite remote sensing, land surface model and reanalysis) through data assimilation techniques that optimize the estimation of fluxes is a promising approach. In this study, a systematic method is developed to optimally combine multiple available data sources for precipitation (P), evapotranspiration (ET), runoff (R) and the total water storage change (TWSC) at 0.5° spatial resolution globally and to obtain water budget closure (i.e. to enforce P − ET − R − TWSC = 0) through a Constrained Kalman Filter (CKF) data assimilation technique. The resulting long-term (1984–2010), monthly, 0.5° resolution global terrestrial water cycle Climate Data Record (CDR) dataset is developed under the auspices of the National Aeronautics and Space Administration (NASA) Earth System Data Records (ESDRs) program. This dataset serves to bridge the gap between sparsely gauged regions and the regions with sufficient in-situ observations in investigating the temporal and spatial variability in the terrestrial hydrology at multiple scales. The CDR created in this study is validated against in-situ measurements like river discharge from the Global Runoff Data Centre (GRDC) and the United States Geological Survey (USGS) and ET from FLUXNET. The dataset is shown to be reliable and can serve the scientific community in understanding historical climate variability in water cycle fluxes and stores, benchmarking the current climate, and validating models.
Sensible heat flux is a turbulent flux driving interactions between the Earth’s surface and the atmosphere, propelling local and regional climate. While turbulent fluxes are measured in situ, global scales require estimates at larger spatial scales, which can be made using remotely sensed satellite data. This study uses a first-order approximation to calculate the unconstrained hourly, terrestrial, 0.5°-resolution sensible heat flux using a land surface temperature consistent with the High Resolution Infrared Radiation Sounder (HIRS) retrievals, six reanalysis-based air temperature products, and a dataset of Zilitinkevich empirical constant Czil values. This sensible heat flux dataset is constrained using the daily Bowen ratio and available energy, to produce nine constrained, daily products. All resulting global, terrestrial averages are within the uncertainty range of ±6.3 W m−2 from the 38.8 W m−2 global annual average previously reported in the literature. The product constrained with the net radiation using the Moderate Resolution Infrared Spectroradiometer (MODIS) albedo and air temperature from the National Centers for Environmental Protection (NCEP) Climate Forecast System Reanalysis (CFSR) performs closest to the FLUXNET ground observations in the monthly analysis. These sensible heat flux estimates should be used for benchmarking global climate models at monthly or annual scales, and improvements should be made to the accuracy of input variables, particularly the temperature gradient, Czil estimates, and the roughness length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.