A generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory general circulation model (GClVO is described. The new model is comprised of a two-layer characterization of the soil column, and uses an aerodynamic representation of the latent and sensible heat fluxes at the land surface. The infiltration algorithm for the upper layer is essentially the same as for the single layer VIC model, while the lower layer drainage formulation is of the form previously implemented in the Max-Planck-Institut GCM. The model partitions the area of interest (e.g., grid cell) into multiple land surface cover types; for each land cover type the fraction of roots in the upper and lower zone is specified. Evapotranspiration consists of three components: canopy evaporation, evaporation from bare soils, and transpiration, which is represented using a canopy and architectural resistance formulation. Once the latent heat flux has been computed, the surface energy balance is iterated to solve for the land surface temperature at each time step. The model was tested using long-term hydrologic and climatological data for Kings Creek, Kansas to estimate and validate the hydrological parameters, and surface flux data from three First International Satellite Land Surface Climatology Project Field Experiment intensive field campaigns in the summer-fall of 1987 to validate the surface energy fluxes. Recent improvements in GCM land surface representations have been primarily in the area of soil-vegetation-atmosphere transfer schemes (SVATS) which seek to represent the interactions of vegetation with the soil column and theatmosphere as they affect surface energy fluxes, especially latent heat. Among the best known SVATS are biosphereatmosphere transfer scheme (BATS) [Dickinson et al., 1986] and simple biosphere model (Si_B) [Sellers et al., 1986]. A distinguishing feature of SVATS, which is evident in both BATS and SiB, is that they have a high level of vertical resolution and structure, but a low level of horizontal resolution [Wood, 1991]. In addition, most SVATS use a "flat Earth" representation of the land surface. Topography can significantly affect large scale soil moisture dynamics, runoff production, and surface energy fluxes (J.S. Famiglietti and E.F. Wood, Application of multiscale water and energy balance model on a tall grass prairie, submitted to Water Resources Research, 1993, herein after referred to as Familglietti and Wood, submitted paper 1). An alternative line of investigation is to develop simpler land surface models that still incorporate important features of the governing hydrological processes in both the vertical and horizontal. For example, Xue et al. [1991 ] simplified SiB by reducing the number of parameters from 44 to 21, apparently with negligible loss of accuracy. Ducoudre et al. [1993] developed a new set of parameterizations of the hydrologic exchanges (SECHIBA) at the land/atmosphere interface wit...
We present new global maps of the Köppen-Geiger climate classification at an unprecedented 1-km resolution for the present-day (1980–2016) and for projected future conditions (2071–2100) under climate change. The present-day map is derived from an ensemble of four high-resolution, topographically-corrected climatic maps. The future map is derived from an ensemble of 32 climate model projections (scenario RCP8.5), by superimposing the projected climate change anomaly on the baseline high-resolution climatic maps. For both time periods we calculate confidence levels from the ensemble spread, providing valuable indications of the reliability of the classifications. The new maps exhibit a higher classification accuracy and substantially more detail than previous maps, particularly in regions with sharp spatial or elevation gradients. We anticipate the new maps will be useful for numerous applications, including species and vegetation distribution modeling. The new maps including the associated confidence maps are freely available via www.gloh2o.org/koppen.
[1] Results are presented from the multi-institution partnership to develop a real-time and retrospective North American Land Data Assimilation System (NLDAS). NLDAS consists of (1) four land models executing in parallel in uncoupled mode, (2) common hourly surface forcing, and (3) common streamflow routing: all using a 1/8°grid over the continental United States. The initiative is largely sponsored by the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP). As the overview for nine NLDAS papers, this paper describes and evaluates the 3-year NLDAS execution of 1 October 1996 to 30 September 1999, a period rich in observations for validation. The validation emphasizes (1) the land states, fluxes, and input forcing of four land models, (2) the application of new GCIP-sponsored products, and (3) a multiscale approach. The validation includes (1) mesoscale observing networks of land surface forcing, fluxes, and states, (2) regional snowpack measurements, (3) daily streamflow measurements, and (4) satellite-based retrievals of snow cover, land surface skin temperature (LST), and surface insolation. The results show substantial intermodel differences in surface evaporation and runoff (especially over nonsparse vegetation), soil moisture storage, snowpack, and LST. Owing to surprisingly large intermodel differences in aerodynamic conductance, intermodel differences in midday summer LST were unlike those expected from the intermodel differences in Bowen ratio. Last, anticipating future assimilation of LST, an NLDAS effort unique to this overview paper assesses geostationary-satellite-derived LST, determines the latter to be of good quality, and applies the latter to validate modeled LST.
[1] Results are presented from the second phase of the multiinstitution North American Land Data Assimilation System (NLDAS-2) research partnership. In NLDAS, the Noah, Variable Infiltration Capacity, Sacramento Soil Moisture Accounting, and Mosaic land surface models (LSMs) are executed over the conterminous U.S. (CONUS) in realtime and retrospective modes. These runs support the drought analysis, monitoring and forecasting activities of the National Integrated Drought Information System, as well as efforts to monitor large-scale floods. NLDAS-2 builds upon the framework of the first phase of NLDAS (NLDAS-1) by increasing the accuracy and consistency of the surface forcing data, upgrading the land surface model code and parameters, and extending the study from a 3-year (1997)(1998)(1999)) to a 30-year (1979-2008) time window. As the first of two parts, this paper details the configuration of NLDAS-2, describes the upgrades to the forcing, parameters, and code of the four LSMs, and explores overall model-to-model comparisons of land surface water and energy flux and state variables over the CONUS. Focusing on model output rather than on observations, this study seeks to highlight the similarities and differences between models, and to assess changes in output from that seen in NLDAS-1. The second part of the two-part article focuses on the validation of model-simulated streamflow and evaporation against observations. The results depict a higher level of agreement among the four models over much of the CONUS than was found in the first phase of NLDAS. This is due, in part, to recent improvements in the parameters, code, and forcing of the NLDAS-2 LSMs that were initiated following NLDAS-1. However, large inter-model differences still exist in the northeast, Lake Superior, and western mountainous regions of the CONUS, which are associated with cold season processes. In addition, variations in the representation of sub-surface hydrology in the four LSMs lead to large differences in modeled evaporation and subsurface runoff. These issues are important targets for future research by the land surface modeling community. Finally, improvement from NLDAS-1 to NLDAS-2 is summarized by comparing the streamflow measured from U.S. Geological Survey stream gauges with that simulated by four NLDAS models over 961 small basins.
[1] Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (∼10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 10 9 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a "grand challenge" to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.