All currently available climate models predict a near-surface warming trend under the influence of rising levels of greenhouse gases in the atmosphere. In addition to the direct effects on climate--for example, on the frequency of heatwaves--this increase in surface temperatures has important consequences for the hydrological cycle, particularly in regions where water supply is currently dominated by melting snow or ice. In a warmer world, less winter precipitation falls as snow and the melting of winter snow occurs earlier in spring. Even without any changes in precipitation intensity, both of these effects lead to a shift in peak river runoff to winter and early spring, away from summer and autumn when demand is highest. Where storage capacities are not sufficient, much of the winter runoff will immediately be lost to the oceans. With more than one-sixth of the Earth's population relying on glaciers and seasonal snow packs for their water supply, the consequences of these hydrological changes for future water availability--predicted with high confidence and already diagnosed in some regions--are likely to be severe.
A generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory general circulation model (GClVO is described. The new model is comprised of a two-layer characterization of the soil column, and uses an aerodynamic representation of the latent and sensible heat fluxes at the land surface. The infiltration algorithm for the upper layer is essentially the same as for the single layer VIC model, while the lower layer drainage formulation is of the form previously implemented in the Max-Planck-Institut GCM. The model partitions the area of interest (e.g., grid cell) into multiple land surface cover types; for each land cover type the fraction of roots in the upper and lower zone is specified. Evapotranspiration consists of three components: canopy evaporation, evaporation from bare soils, and transpiration, which is represented using a canopy and architectural resistance formulation. Once the latent heat flux has been computed, the surface energy balance is iterated to solve for the land surface temperature at each time step. The model was tested using long-term hydrologic and climatological data for Kings Creek, Kansas to estimate and validate the hydrological parameters, and surface flux data from three First International Satellite Land Surface Climatology Project Field Experiment intensive field campaigns in the summer-fall of 1987 to validate the surface energy fluxes. Recent improvements in GCM land surface representations have been primarily in the area of soil-vegetation-atmosphere transfer schemes (SVATS) which seek to represent the interactions of vegetation with the soil column and theatmosphere as they affect surface energy fluxes, especially latent heat. Among the best known SVATS are biosphereatmosphere transfer scheme (BATS) [Dickinson et al., 1986] and simple biosphere model (Si_B) [Sellers et al., 1986]. A distinguishing feature of SVATS, which is evident in both BATS and SiB, is that they have a high level of vertical resolution and structure, but a low level of horizontal resolution [Wood, 1991]. In addition, most SVATS use a "flat Earth" representation of the land surface. Topography can significantly affect large scale soil moisture dynamics, runoff production, and surface energy fluxes (J.S. Famiglietti and E.F. Wood, Application of multiscale water and energy balance model on a tall grass prairie, submitted to Water Resources Research, 1993, herein after referred to as Familglietti and Wood, submitted paper 1). An alternative line of investigation is to develop simpler land surface models that still incorporate important features of the governing hydrological processes in both the vertical and horizontal. For example, Xue et al. [1991 ] simplified SiB by reducing the number of parameters from 44 to 21, apparently with negligible loss of accuracy. Ducoudre et al. [1993] developed a new set of parameterizations of the hydrologic exchanges (SECHIBA) at the land/atmosphere interface wit...
A frequently encountered difficulty in assessing model-predicted land-atmosphere exchanges of moisture and energy is the absence of comprehensive observations to which model predictions can be compared at the spatial and temporal resolutions at which the models operate. Various methods have been used to evaluate the land surface schemes in coupled models, including comparisons of model-predicted evapotranspiration with values derived from atmospheric water balances, comparison of model-predicted energy and radiative fluxes with tower measurements during periods of intensive observations, comparison of model-predicted runoff with observed streamflow, and comparison of model predictions of soil moisture with spatial averages of point observations. While these approaches have provided useful model diagnostic information, the observation-based products used in the comparisons typically are inconsistent with the model variables with which they are compared-for example, observations are for points or areas much smaller than the model spatial resolution, comparisons are restricted to temporal averages, or the spatial scale is large compared to that resolved by the model. Furthermore, none of the datasets available at present allow an evaluation of the interaction of the water balance components over large regions for long periods. In this study, a model-derived dataset of land surface states and fluxes is presented for the conterminous United States and portions of Canada and Mexico. The dataset spans the period 1950-2000, and is at a 3-h time step with a spatial resolution of ⅛ degree. The data are distinct from reanalysis products in that precipitation is a gridded product derived directly from observations, and both the land surface water and energy budgets balance at every time step. The surface forcings include precipitation and air temperature (both gridded from observations), and derived downward solar and longwave radiation, vapor pressure deficit, and wind. Simulated runoff is shown to match observations quite well over large river basins. On this basis, and given the physically based model parameterizations, it is argued that other terms in the surface water balance (e.g., soil moisture and evapotranspiration) are well represented, at least for the purposes of diagnostic studies such as those in which atmospheric model reanalysis products have been widely used. These characteristics make this dataset useful for a variety of studies, especially where ground observations are lacking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.