The accuracy of estimated glomerular filtration rate (eGFR) equations in diabetes mellitus (DM) patients has been extensively questioned. We evaluated the performance of cystatin C-based equations alone or in combination with creatinine to estimate GFR in DM patients. A PRISMA-compliant systematic review was performed in the MEDLINE and Embase databases, with “diabetes mellitus” and “cystatin C” as search terms. Studies comparing cystatin C-based eGFR equations with measured GFR (mGFR) in DM patients were eligible. Accuracies P10, P15, P20, and P30 indicated the proportion of eGFR results within 10, 15, 20, and 30% of mGFR. Single-arm meta-analyses were conducted, and the Quality of Diagnostic Accuracy Studies-II tool (QUADAS-2) was applied. Twenty-three studies comprising 7065 participants were included, and 24 equations were analyzed in a broad range of GFRs. Meta-analyses were completed for 10 equations. The mean P30 accuracies of the equations ranged from 41% to 87%, with the highest values found with both CKD-EPI equations. Mean P10-P15 achieved 35% in the best scenario. A sensitivity analysis to evaluate different mGFR methods did not change results. In conclusion, cystatin C-based eGFR equations represent measured GFR fairly at best in DM patients, with high variability among the several proposed equations.
Aims: MicroRNAs (miRs) regulate processes involved in both cardiac remodeling and obesity. We investigated if the expression of selected miRs in patients with heart failure (HF) is influenced by the presence of obesity.
Methods:In this case-control study, we compared plasma levels of miR-21, -130b, -221, -423-5p, and the -221/-130b ratio in 57 age-and gender-matched subjects: 40 HF patients (20 obese HF and 20 lean HF) and 17 lean healthy controls. Body composition was estimated by bioelectrical impedance analysis. MiRs were measured by quantitative reverse transcription-PCR. Bioinformatics analysis was performed based on miRs findings to predict their putative targets and investigate their biological function.Results: HF was associated with increased miR-423-5p levels in both lean and obese patients (P<0.05 vs. controls) without differences between HF groups. MiR-130b levels were reduced in obese HF patients compared with HF lean (P=0.036) and controls (P=0.025). MiR-221 levels were non-significantly increased in obese HF patients. MiR-21 levels were not different among the groups. MiR-221/-130b ratio was increased in obese HF patients, and was positively associated with body fat percentage (r=0.43; P=0.002), body mass index (r=0.44; P=0.002), and waist circumference (r=0.40; P=0.020). Computational prediction of target genes followed by functional enrichment analysis indicated a relevant role of miR-130b and miR-221 in modulating the expression of genes associated to cardiovascular and endocrine diseases, and suggested their influence in important signaling mechanisms and in numerous processes related to the circulatory and endocrine systems.
Conclusions:In HF patients, the presence of obesity is associated with a differential expression of selected miRs and the miR-221/-130b ratio had significant correlations with adiposity parameters. Computational target prediction analysis identified several interrelated pathways targeted by miR-130b and miR-221 with a known relationship with endocrine and cardiovascular diseases, representing potential mechanisms to be further validated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.