The complete nucleotide sequence of the mitochondrial DNA of the rainbow trout, Onchorynchus mykiss, has been determined. The total length of the molecule is 16,660 bp. The rainbow trout mitochondrial DNA has the same organization described in eutherian mammals, the clawed frog (Xenopus laevis), and the two fish species, Oriental stream loach (Crossotoma lacustre) and carp (Cyprinus carpio). Alignment and comparison of the deduced amino acid sequences of the 13 proteins encoded by rainbow trout and other vertebrate mitochondrial genomes allowed us to estimate that COI is the most conserved mitochondrial subunit (amino acid identity ranging from 85.6% to 94.8%) whereas ATPase 8 is the most variable one (amino acid identity ranging from 30.8% to 70.4%). Putative secondary structures for the 22 tRNAs found in the molecule are given along with an extensive comparison of tRNA sequences among representative species of each major group of vertebrates. In this sense, an unusual cloverleaf structure for the tRNASer(AGY) is proposed. A stem-loop structure inferred for the origin of the L-strand replication (OL) and the presence of a large polycytidine tract in the OL loop is described. The existence of this stretch instead of the usual T-rich sequence reported so far in mammal mtDNAs is explained in terms of a less-strict template dependence of the RNA primase involved in the initiation of L-strand replication.
The nucleotide sequence analysis of the PCR products corresponding to the variable large-subunit rRNA domains D1, D2, D9, and D10 from ten representative dinoflagellate species is reported. Species were selected among the main laboratory-grown dinoflagellate groups: Prorocentrales, Gymnodiniales, and Peridiniales which comprise a variety of morphological and ecological characteristics. The sequence alignments comprising up to 1,000 nucleotides from all ten species were employed to analyze the phylogenetic relationships among these dinoflagellates. Maximum parsimony and neighbor-joining trees were inferred from the data generated and subsequently tested by bootstrapping. Both the D1/D2 and the D9/D10 regions led to coherent trees in which the main class of dinoflagellates. Dinophyceae, is divided in three groups: prorocentroid, gymnodinioid, and peridinioid. An interesting outcome from the molecular phylogeny obtained was the uncertain emergence of Prorocentrum lima. The molecular results reported agreed with morphological classifications within Peridiniales but not with those of Prorocentrales and Gymnodiniales. Additionally, the sequence comparison analysis provided strong evidence to suggest that Alexandrium minutum and Alexandrium lusitanicum were synonymous species given the identical sequence they shared. Moreover, clone Gg1V, which was determined Gymnodinium catenatum based on morphological criteria, would correspond to a new species of the genus Gymnodinium as its sequence clearly differed from that obtained in G. catenatum. The sequence of the amplified fragments was demonstrated to be a valuable tool for phylogenetic and taxonomical analysis among these highly diversified species.
3,4-Dihydroxyphenylacetate 2,3-dioxygenase, an extradiol-ring-cleavage dioxygenase, has been purified from Klebsiella pneumoniae to homogeneity. The enzyme has an M(r) of 102,000 in its tetrameric form with an M(r) of 25,500 for each subunit. Unlike most other dioxygenases, the enzyme reported here contains Mg2+, as determined by atomic-absorption spectrophotometry and plasma emission metal analysis. The enzyme was shown to contain approx. 1 g-atom of Mg2+/mol of protein and we suggest an alpha 4 Mg2+ quaternary structure. This is the first report of a dioxygenase containing Mg2+ in its structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.