Purpose Pumpkins are a rich source of essential nutrients, namely, β-carotene, minerals and vitamins, and they are therefore suitable for making functional juice. This study aims to develop pumpkin-based functional juice and assess the acceptability of the product by various consumers. In total, 55 per cent of the panelists disliked the pumpkin juice because of its strong off-flavor. Consequently, different blends of pumpkin juice with mango, orange, strawberry and green apple juices were prepared and evaluated for global appreciation and descriptive sensory analysis. Methodology Pumpkins, green apples, mangos, oranges and strawberries were obtained from the local market. Four mixtures of juices were prepared by mixing pumpkin and mango juice (750/250, v/v), pumpkin and green apple juice (750/250, v/v), pumpkin and orange juice (750/250, v/v) and pumpkin with strawberry and orange juice (750/125/125, v/v/v). The contents of moisture ash, fiber, carbohydrate, crude protein and lipids were estimated according to AOAC methods. β-Carotene, vitamin C and minerals were determined. A semi-trained panel consisting of 100 members assessed sensory characteristics of pumpkin juice and mixtures using a quantitative descriptive analysis method (QDA) for different attributes. Findings The findings show that the moisture, crude protein, fiber, ash and carbohydrate contents indicate that the developed pumpkin juice was rich in these essential nutrients. The fiber value in our study was lower than the value previously reported for pumpkin. The content of β-carotene and vitamin C in the developed pumpkin juice was considerably higher than that reported previously for fruits. The values of calcium and iron of the current study were much higher than those previously reported in vegetable juices and mixtures. The sensory results revealed that the developed pumpkin-based juice blends are acceptable by the consumers. Originality value This study was carried out to develop a suitable formula for preparing functional juices from pumpkin, which is not consumed willingly by children and the elderly; the authors aimed to improve its taste and flavor by mixing it with different fruit juices. The results demonstrated that pumpkin juice is rich in essential nutrients such as vitamins, minerals and antioxidants, suggesting its health-promoting potential. Mixing pumpkin juice with mango juice or orange and strawberry juices significantly improved the sensory quality of the products. Strikingly, the formulated pumpkin juice mixtures received good acceptance and appreciation by children and the elderly, which could promote its use as a functional juice. Generally, pumpkin-based juice blends are rich in vitamins, minerals and antioxidants and can therefore be consumed as a functional beverage with potentially increased health-promoting characteristics. Using pumpkin for developing functional juices could add commercial value to pumpkins. Future studies should specifically focus on large-scale production and commercialization of these juice mixtures.
Hydroxyapatite nanoparticles (HAn) have been produced as biomaterial from biowaste, especially snail shells (Atactodea glabrata). It is critical to recycle the waste product in a biomedical application to overcome antibiotic resistance as well as biocompatibility with normal tissues. Moreover, EDX, TEM, and FT-IR analyses have been used to characterize snail shells and HAn. The particle size of HAn is about 15.22 nm. Furthermore, higher inhibitory activity was observed from HAn than the reference compounds against all tested organisms. The synthesized HAn has shown the lowest MIC values of about 7.8, 0.97, 3.9, 0.97, and 25 µg/mL for S. aureus, B. subtilis, K. pneumonia, C. albicans, and E. coli, respectively. In addition, the HAn displayed potent antibiofilm against S. aureus and B. subtilis. According to the MTT, snail shell and HAn had a minor influence on the viability of HFS-4 cells. Consequently, it could be concluded that some components of waste, such as snail shells, have economic value and can be recycled as a source of CaO to produce HAn, which is a promising candidate material for biomedical applications.
Fish quality is important in the food industry. Studies on the nutritional, microbial and minerals in Indian mackerel fish are limited. Therefore, this study was carried out to assess the quality and production of fish products (balls and fingers). Additionally, the effect of frozen storage for six months on the microbial, nutritional and sensory evaluation of fish balls and fingers was studied. The obtained results showed that the estimated minerals (zinc, cadmium, chromium, copper, lead and mercury) contents in Indian mackerel muscles were lower than the maximum permissible limits for human consumption. The levels of total bacterial counts and total yeast counts in Indian mackerel purchased from three different stores varied. After 6 months of storage, the microbial content decreased in Indian mackerel fish balls and fingers to less than 2.0×102 CFU/g, which was due to the effect of freezing on the growth and activity of microorganisms, while the carbohydrate, fat and energy contents increased, and the ash, protein and moisture contents decreased; however, Indian mackerel fish fingers had elevated ash, carbohydrate, fat, protein and energy contents and a reduced moisture content after freezing. Sensory evaluation of Indian mackerel balls and fingers at the start and end of the storage period (6 months) revealed good scores for appearance, odor, texture, taste and acceptability. These results provide insights into the benefits of good-quality Indian mackerel fish in the fish product industry and their availability after storage for six months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.