In the present study we quantify stress by measuring transient perspiratory responses on the perinasal area through thermal imaging. These responses prove to be sympathetically driven and hence, a likely indicator of stress processes in the brain. Armed with the unobtrusive measurement methodology we developed, we were able to monitor stress responses in the context of surgical training, the quintessence of human dexterity. We show that in dexterous tasking under critical conditions, novices attempt to perform a task's step equally fast with experienced individuals. We further show that while fast behavior in experienced individuals is afforded by skill, fast behavior in novices is likely instigated by high stress levels, at the expense of accuracy. Humans avoid adjusting speed to skill and rather grow their skill to a predetermined speed level, likely defined by neurophysiological latency.
The negative impact of strong sympathetic arousal on dexterous performance during formal surgical training is well-known. This study investigates how this relationship might change if surgical training takes place as a hobby in an informal environment. Fifteen medical students volunteered in a 5-week training regimen and weekly performed two standardized microsurgical tasks: circular cutting and simple interrupted suturing. Time was taken and two independent reviewers evaluated the surgical proficiency. The State Trait Anxiety Inventory (STAI) and the NASA Task Load Index (NASA-TLX) questionnaires measured subjective anxiety and workload, respectively. A high-resolution thermal imaging camera recorded facial imagery, from which a computational algorithm extracted the perinasal perspiration signal as indicator of sympathetic arousal. Anxiety scores on STAI questionnaires were indifferent for all five sessions. The continuously measured arousal signal from the thermal facial imagery was moderate and did not correlate with surgical proficiency or speed. Progressive experience was the strongest contributor to improved skill and speed, which were attained in record time. It appears that dexterous skill acquisition is facilitated by the absence of strong arousals, which can be naturally eliminated in the context of informal education. Given the low cost and availability of surgical simulators, this result opens the way for re-thinking the current practices in surgical training and beyond.
No abstract
No abstract
We describe a controlled experiment, aiming to study productivity and stress effects of email interruptions and activity interactions in the modern office. The measurement set includes multimodal data for n = 63 knowledge workers who volunteered for this experiment and were randomly assigned into four groups: (G1/G2) Batch email interruptions with/without exogenous stress. (G3/G4) Continual email interruptions with/without exogenous stress. To provide context, the experiment’s email treatments were surrounded by typical office tasks. The captured variables include physiological indicators of stress, measures of report writing quality and keystroke dynamics, as well as psychometric scores and biographic information detailing participants’ profiles. Investigations powered by this dataset are expected to lead to personalized recommendations for handling email interruptions and a deeper understanding of synergistic and antagonistic office activities. Given the centrality of email in the modern office, and the importance of office work to people’s lives and the economy, the present data have a valuable role to play.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.