Sewage sludge improves agricultural soil and plant growth, but there are risks associated with its use, including high heavy metal content. In this study, experiments were carried out to investigate the role of endophytic Talaromyces pinophilus MW695526 on the growth of Triticum aestivum cultivated in soil amended with sewage sludge and its phytoremediation ability. T. pinophilus could produce gibberellic acid (GA) and stimulate T. aestivum to accumulate GA. The results showed that inoculation with T. pinophilus boosted plant growth criteria, photosynthetic pigments, osmolytes (soluble proteins, soluble sugars and total amino acids), enzymatic antioxidants (catalase, superoxide dismutase and peroxidase), K, Ca and Mg. On the other hand, it reduced Na, Na/K ratio, Cd, Ni, Cu and Zn in the growth media as well as in the shoot and root of T. aestivum. The results suggest that endophytic T. pinophilus can work as a barrier to reduce the absorption of heavy metals in T. aestivum cultivated in soil amended with sewage sludge.
Zizyphus spina-christi L. has antimicrobial properties because of the presence of biologically active compounds. Alternaria is an opportunistic pathogen that causes leaf spots, rots, and blights on a variety of plant parts. This study aimed to reduce the usage of synthetically derived fungicides. Identification of the bioactive components present in leaves and fruits methanolic extracts of Z. spina-christi was performed using high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The efficacy of the two methanol extracts was tested against (a) in vitro fungal growth and (b) pathogenicity control on non-wounded and wounded tomato fruits. The results revealed that gallic acid and ellagic acid were the major components in leaves extract while quercetin was the major component in fruits extract. In addition, Phenol, 2,5-bis(1,1-dimethylethyl) (40.24%) and Decane, 2-methyl-(18.53%) were the most abundant components in the leaf extract, and the presence of D-mannonic acid, 2,3,5,6-tetrakis-o-(trimethylsilyl), and γ-lactone (22.72%) were major components in fruits extract. The methanolic extracts of Z. spina-christi leaves and fruits demonstrated significant antifungal activity against the growth of Alternaria alternata, A. citri, and A. radicina with variable inhibition percentages at different concentrations. Pathogenicity was increased when the skin was injured, as expected. Both extracts reduced the percentage of infected fruits.
Tomatoes (Lycopersicon esculentum) are one of the main crops grown in Egypt. The fungal black spot illness of fruits is usually associated with the secretion of mycotoxin by Alternaria toxigenic species. Twenty Alternaria isolates were isolated from infected tomatoes fruits by baiting technique, morphologically identified to species level, and confirmed using Internal Transcribed Spacer (ITS) gene sequencing. ITS gene sequencing of fragments obtained 547, 547, 542, 554, and 547 bp for A. alternata, A. brassicicola, A. citri, A. radicina, and A. tenuissima, respectively. Alternaria species were investigated for mycotoxin production using the high-performance liquid chromatography (HPLC) technique. The data from the HPLC analysis showed that the mycotoxins were determined in four out of five Alternaria species, with the incidence ranging from 0.89–9.85 µg/mL of fungal extract at different retention times. Alternaria alternata was the most active species and produced three types of toxins. Polyketide synthase genes (pksH and pksJ) which are involved in the Alternaria toxin’s biosynthesis were also amplified from the DNA of Alternaria species.
Background Mycotoxins are secondary metabolites made by a variety of molds and fungi. They contaminate a lot of food products and local crops during pre- and post-harvesting under favorable conditions like high temperature and moisture. Aspergillus species are the most common fungi that contaminate food and produce biochemicals known as mycotoxins. Aflatoxins (AFB1, AFB2, AFG1, and AFG2) are the major mycotoxins produced by A. flavus and A. parasiticus that harm animal and human health. These fungi are controlled by chemical fungicides, but these are harmful to the environment. The aim of this study was to determine whether the aflatoxigenic fungi can be exterminated only by marine algal extracts or not. Results The findings showed that the tested seaweed extracts inhibited fungal growth and aflatoxins production to varying degrees. The maximum antifungal activity was recorded in Halimeda opuntia extract against A. parasiticus-24 and A. flavus-18 and Turbunaria decurrens extract against A. flavus-18 (with an inhibition percentage of 77.78%), followed by Jania rubens extract against A. parasiticus-16 with inhibition percentage 75.88% compared to the control. Aqueous extract of H. opuntia effectively eliminated aflatoxins (B1, B2, G1, and G2) in A. parasiticus-16 and A. parasiticus-24. T. decurrens extract could detoxify 100% of aflatoxins in three isolates of A. parasiticus. J. rubens extract eliminated aflatoxins in A. parasiticus-15 and A. parasiticus-16 compared to their normal production using high-performance liquid chromatography. Conclusions According to this study, the macroalgal species with numerous distinctive antifungal properties constituents significantly inhibited the growth and production of aflatoxin in A. parasiticus and A. flavus isolates. The findings supported the use of macroalgae as a biological control agent against fungi and their toxins.
T HIRTY wheat flour samples were collected from different bakeries and markets in Qena City, Egypt over five months were used to measure moisture content, fungi and aflatoxins. Moisture contents ranged from 5.92% to 14.43%. Twenty-one fungal species belonging to 13 genera were isolated from the wheat flour samples on Czapeks agar media at 28ᵒC. The most common fungal genera were Aspergillus, Mucor and Penicillium. The correlation coefficient analysis revealed to strong positive correlation between moisture content and average total count of fungi in wheat flour samples (0.92). Qualitative and quantitative determination of aflatoxins in 29 isolates of the A. flavi group (A. flavus, A. flavus var. columnaris and A. parasiticus) were made using thin layer chromatography (TLC) and high performance liquid chromatography (HPLC), respectively. The results for (TLC) were as follow: Fourteen isolates (48.2%) had the ability to produce aflatoxin B1, five isolates (17.2%) could produce both aflatoxin B1 and aflatoxin B2 and ten (34.4%) isolates were negative. By using HPLC, the concentrations of aflatoxin were 13. 416-9229.343, 2.639-152.668 and 6.391-79.507µg/L for AFB1, AFB2, and AFG2, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.