BackgroundAedes aegypti and Ae. albopictus are the primary vectors that transmit several arboviral diseases, including dengue, chikungunya, and Zika. The world is presently experiencing a series of outbreaks of these diseases, so, we still require to better understand the current distributions and possible future shifts of their vectors for successful surveillance and control programs. Few studies assessed the influences of climate change on the spatial distributional patterns and abundance of these important vectors, particularly using the most recent climatic scenarios. Here, we updated the current potential distributions of both vectors and assessed their distributional changes under future climate conditions.MethodsWe used ecological niche modeling approach to estimate the potential distributions of Ae. aegypti and Ae. albopictus under present-day and future climate conditions. This approach fits ecological niche model from occurrence records of each species and environmental variables. For each species, future projections were based on climatic data from 9 general circulation models (GCMs) for each representative concentration pathway (RCP) in each time period, with a total of 72 combinations in four RCPs in 2050 and 2070. All ENMs were tested using the partial receiver operating characteristic (pROC) and a set of 2,048 and 2,003 additional independent records for Ae. aegypti and Ae. albopictus, respectively. Finally, we used background similarity test to assess the similarity between the ENMs of Ae. aegypti and Ae. albopictus.ResultsThe predicted potential distribution of Ae. aegypti and Ae. albopictus coincided with the current and historical known distributions of both species. Aedes aegypti showed a markedly broader distributional potential across tropical and subtropical regions than Ae. albopictus. Interestingly, Ae. albopictus was markedly broader in distributional potential across temperate Europe and the United States. All ecological niche models (ENMs) were statistically robust (P < 0.001). ENMs successfully anticipated 98% (1,999/2,048) and 99% (1,985/2,003) of additional independent records for both Ae. aegypti and Ae. albopictus, respectively (P < 0.001). ENMs based on future conditions showed similarity between the overall distributional patterns of future-day and present-day conditions; however, there was a northern range expansion in the continental USA to include parts of Southern Canada in case of Ae. albopictus in both 2050 and 2070. Future models also anticipated further expansion of Ae. albopictus to the East to include most of Europe in both time periods. Aedes aegypti was anticipated to expand to the South in East Australia in 2050 and 2070. The predictions showed differences in distributional potential of both species between diverse RCPs in 2050 and 2070. Finally, the background similarity test comparing the ENMs of Ae. aegypti and Ae. albopictus was unable to reject the null hypothesis of niche similarity between both species (P > 0.05).ConclusionThese updated maps provided details t...
The ciliate genus Protocruzia belongs to one of the most ambiguous taxa considering its systematic position, possible as a member of the classes Heterotrichea, Spirotrichea or Karyorelictea, which is tentatively placed into Spirotrichea in Lynn's 2008 system. To test these hypotheses, multigene trees (Bayesian inference, evolutionary distance, maximum parsimony, and maximum likelihood) were constructed using the small subunit rRNA (SSU rRNA) gene, internal transcribed spacer 2 (ITS2) and a protein coding gene (histone H4). All analyses agree that: (1) four morphotypes of Protocruzia from different geographical origins group together and form a monophyletic clade, which cannot be assigned to any of the eleven described ciliate classes; (2) it is invariably positioned on an isolated branch separated from the class Spirotrichea suggesting that this clade should be clearly removed from Spirotrichea; (3) this leads us to hypothesize that this taxon may indeed represent a lineage on a class rank. Based on the fact that it is, both morphologically and in molecular features, closely related to heterotrichs, Colpodea and Oligohymenophorea, Protocruziida might be an ancestral form for the subphylum Intramacronucleata in the evolutionary line from the class Heterotrichea (subphylum Postciliodesmatophora) to higher taxa.
The journal of Toxicology and pest control is one of the series issued twice by the Egyptian Academic Journal of Biological Sciences, and is devoted to publication of original papers related to the interaction between insects and their environment. The goal of the journal is to advance the scientific understanding of mechanisms of toxicity. Emphasis will be placed on toxic effects observed at relevant exposures, which have direct impact on safety evaluation and risk assessment. The journal therefore welcomes papers on biology ranging from molecular and cell biology, biochemistry and physiology to ecology and environment, also systematics, microbiology, toxicology, hydrobiology, radiobiology and biotechnology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.