BackgroundAedes aegypti and Ae. albopictus are the primary vectors that transmit several arboviral diseases, including dengue, chikungunya, and Zika. The world is presently experiencing a series of outbreaks of these diseases, so, we still require to better understand the current distributions and possible future shifts of their vectors for successful surveillance and control programs. Few studies assessed the influences of climate change on the spatial distributional patterns and abundance of these important vectors, particularly using the most recent climatic scenarios. Here, we updated the current potential distributions of both vectors and assessed their distributional changes under future climate conditions.MethodsWe used ecological niche modeling approach to estimate the potential distributions of Ae. aegypti and Ae. albopictus under present-day and future climate conditions. This approach fits ecological niche model from occurrence records of each species and environmental variables. For each species, future projections were based on climatic data from 9 general circulation models (GCMs) for each representative concentration pathway (RCP) in each time period, with a total of 72 combinations in four RCPs in 2050 and 2070. All ENMs were tested using the partial receiver operating characteristic (pROC) and a set of 2,048 and 2,003 additional independent records for Ae. aegypti and Ae. albopictus, respectively. Finally, we used background similarity test to assess the similarity between the ENMs of Ae. aegypti and Ae. albopictus.ResultsThe predicted potential distribution of Ae. aegypti and Ae. albopictus coincided with the current and historical known distributions of both species. Aedes aegypti showed a markedly broader distributional potential across tropical and subtropical regions than Ae. albopictus. Interestingly, Ae. albopictus was markedly broader in distributional potential across temperate Europe and the United States. All ecological niche models (ENMs) were statistically robust (P < 0.001). ENMs successfully anticipated 98% (1,999/2,048) and 99% (1,985/2,003) of additional independent records for both Ae. aegypti and Ae. albopictus, respectively (P < 0.001). ENMs based on future conditions showed similarity between the overall distributional patterns of future-day and present-day conditions; however, there was a northern range expansion in the continental USA to include parts of Southern Canada in case of Ae. albopictus in both 2050 and 2070. Future models also anticipated further expansion of Ae. albopictus to the East to include most of Europe in both time periods. Aedes aegypti was anticipated to expand to the South in East Australia in 2050 and 2070. The predictions showed differences in distributional potential of both species between diverse RCPs in 2050 and 2070. Finally, the background similarity test comparing the ENMs of Ae. aegypti and Ae. albopictus was unable to reject the null hypothesis of niche similarity between both species (P > 0.05).ConclusionThese updated maps provided details t...
Rapid emergence of most vector-borne diseases (VBDs) may be associated with range expansion of vector populations. Culex quinquefasciatus Say 1823 is a potential vector of West Nile virus, Saint Louis encephalitis virus, and lymphatic filariasis. We estimated the potential distribution of Cx. quinquefasciatus under both current and future climate conditions. The present potential distribution of Cx. quinquefasciatus showed high suitability across low-latitude parts of the world, reflecting the current distribution of the species. Suitable conditions were identified also in narrow zones of North Africa and Western Europe. Model transfers to future conditions showed a potential distribution similar to that under present-day conditions, although with higher suitability in southern Australia. Highest stability with changing climate was between 30°S and 30°N. The areas present high agreement among diverse climate models as regards distributional potential in the future, but differed in anticipating potential for distribution in North and Central Africa, southern Asia, central USA, and southeastern Europe. Highest disparity in model predictions across representative concentration pathways (RCPs) was in Saudi Arabia and Europe. The model predictions allow anticipation of changing distributional potential of the species in coming decades.
In the last few years, significant changes in climate have had a disparate effect on biodiversity. The influences of these changes are random and unpredictable. The resurgence of insect pests, especially of medical and veterinary importance, often corresponds with climate changes. The Old World screwworm, Chrysomya bezziana, is one of the most important myiasis-causing flies that parasitize warm-blooded animals in the Eastern Hemisphere. We used a spatial distribution modeling approach to estimate the consequences of climatic changes on the potential geographic distribution of this insect throughout the world currently and in the future. A Maxent model used occurrence data from 104 localities and 19 climatic factors to predict the suitable habitat regions throughout the world. Two representative concentration pathways 2.6 and 8.5, were used to forecast the future distribution of C. bezziana in 2050 and 2070. The Maxent model for C. bezziana provided a satisfactory result, with a high value of the Area Under Curve equal to 0.855 (±0.001). Furthermore, the True Skilled Statistics value is equal to 0.67. These values indicate the significant influence on the model of the ecology of this fly species. Jackknife test indicated that temperature variables play a significant role in C. bezziana dynamics. The resultant models indicated the areas at risk of invasion by potential serious medical/ veterinary issues, especially in countries with a large livestock production. Throughout the long history of our planet, the climate has changed dramatically, but in the last few decades global warming has become more tangible even for the layman 1,2. Greenhouse gases emitted as a result of anthropogenic action are the main factors driving global warming 3. The Intergovernmental Panel on Climate Change (IPCC) has predicted an increase of about a 1.8-4 °C in global temperature by the end of the 21 st century as a result of high CO 2 levels 4. This form a challenge for many ecosystems throughout the world, threatening ecological processes and impacting on biodiversity, including insects 5. Conversely, climate change is one of the most important factors associated with the resurgence of insect pests. Many medically important pests such as mosquitoes (Culicidae) will invade new regions because of changes in global temperature 6. Flies that cause myiasis will also be able to invade new regions and impact the livestock economy in different parts of the world. Myiasis is a type of parasitism in which the living tissues of a vertebrate host are infested by dipterous larvae 7. This phenomenon is widespread throughout the world, especially the tropical regions. It usually occurs in both domestic and wild animals and, under certain conditions, in humans 8,9. The Old World screwworm fly (OWSF) Chrysomya bezziana (Villeneuve) is an obligate parasite causing myiasis in animals and humans in the Eastern Hemisphere 7,9,10. Females deposit their eggs in wounds or near the natural body orifices of the targeted host. Then the maggots burrow and feed o...
Purpose of ReviewArboviruses, viruses transmitted by arthropods such as mosquitoes, ticks, sandflies, and fleas are a significant threat to public health because of their epidemic and zoonotic potential. The geographical distribution of mosquito-borne diseases such as West Nile (WN), Rift Valley fever (RVF), Dengue, Chikungunya, and Zika has expanded over the last decades. Countries of the Mediterranean and Black Sea regions are not spared. Outbreaks of WN are repeatedly reported in the Mediterranean basin. Human cases of RVF were reported at the southern borders of the Maghreb region. For this reason, establishing the basis for the research to understand the potential for the future emergence of these and other arboviruses and their expansion into new geographic areas became a public health priority. In this context, the European network “MediLabSecure” gathering laboratories in 19 non-EU countries from the Mediterranean and Black Sea regions seeks to improve the surveillance (of animals, humans, and vectors) by reinforcing capacity building and harmonizing national surveillance systems to address this important human and veterinary health issue. The aim of this review is to give an exhaustive overview of arboviruses and their vectors in the region.Recent FindingsThe data presented underline the importance of surveillance in the implementation of more adapted control strategies to combat vector-borne diseases. Partner laboratories within the MediLabSecure network present a wide range of infrastructures and have benefited from different training programs.SummaryAlthough reporting of arboviral presence is not carried out in a systematic manner, the expansion of the area where arboviruses are present cannot be disputed. This reinforces the need for increasing surveillance capacity building in this region to prevent future emergences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.